Outil pour résoudre les calculs de type 'compte est bon' automatiquement afin de trouver un nombre donné en réalisant des opérations à partir d'autres nombres.
Le Compte Est Bon - dCode
Catégorie(s) : Jeux de Nombres
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Le compte est bon est un jeu mathématique issu de l'émission Des chiffres et des lettres (DCDL) dont le but est d'obtenir un nombre cible (généralement compris entre 101 et 999) à partir des 4 opérations élémentaires (+, -, ×, ÷) et de 6 nombres tirés au hasard.
Pour trouver les solutions d'un tirage, la seule méthode est une recherche exhaustive qui teste toutes les combinaisons possibles. Le nombre de calculs augmente de façon exponentielle, ce qui rend l'exploration complète coûteuse pour un ordinateur et difficile à réaliser mentalement.
Pour accélérer le calcul à la main, deux heuristiques sont particulièrement utiles :
— approcher le résultat cible à l'aide de multiplications, puis ajuster avec les petits nombres par addition ou soustraction ;
— décomposer le nombre cible, ou un nombre proche, en deux ou trois facteurs pour orienter les opérations
Ces méthodes ne garantissent pas d’aboutir à une solution, mais elles réduisent nettement la quantité de possibilités à examiner.
Le solveur original reprend les règles du jeu télévisé (des chiffres et des lettres), 6 nombres de départ (tous entiers naturels non nuls), des calculs avec +, -, *, / qui interdisent les divisions non entières (avec des nombres à virgule).
Exemple : Trouver 123 avec 4,5,6,7,8,9. En 3 opérations :
8 + 5 = 13; 13 x 9 = 117; 117 + 6 = 123.
Le solveur amélioré est beaucoup plus permissif, il autorise des contraintes sur les opérateurs, le nombre d'opérations, etc. Il propose aussi de générer une liste de tous les résultats possibles à partir d'un tirage.
Exemple : Trouver 24 en utilisant tous les nombres 5,5,5,1. En autorisant les valeurs non entières :
1 / 5 = 0.2; 5 - 0.2 = 4.8; 5 x 4.8 = 24
Le solveur à N nombres reprend les règles originales mais autorise autant de nombre que désiré. Le résultat retourné n'est pas forcément le plus court. Le temps de calcul peut exploser (des milliards d'itérations) et, si aucune solution n'existe, la recherche ne se termine jamais.
Il existe trois grands types d'algorithme pour résoudre le compte est bon :
Exemple : Les nombres 2, 5, 10
Recherche récursive : effectue toutes les opérations à partir de N nombres. Il utilise 2 nombres, et pour chaque opération, réitère avec le résultat de l'opération et les N-2 nombres restants. Cette méthode explore tout l'arbre des calculs possibles mais présente une complexité exponentielle.
Exemple : Prendre 2 et 5, faire une addition : 2+5=7, une soustraction, 5-2 = 3, etc. Puis récupérer le résultat 7 (ou 3), et les nombres non utilisés : 10, et recommencer. 7+10 = 17, etc.
Recherche avec mise en cache (mémoïsation) : identique au précédent, il met en mémoire les calculs pour ne pas avoir à les refaire. Cela accélère la recherche mais consomme davantage de mémoire.
Exemple : Prendre 2 et 5, rechercher les résultats déjà connus comme l'addition 7, et la soustraction 3, etc. Continuer ainsi plus rapidement.
Recherche aléatoire (randomisée ou Monte Carlo) : il peut trouver une solution rapidement mais ne fait pas tous les calculs possibles, il peut prouver qu'une solution existe mais ne peut pas prouver qu'elle n'existe pas.
Exemple : Prendre 2 nombres au hasard, 5 et 10, et faire une opération au hasard : multiplication, stocker le résultat : 5*10=50 et continuer avec les nombres restants : 2 et 50
Les nombres négatifs sont généralement ignorés car ils n'influencent pas la résolution. En effet, appliquer l'opérateur - (moins) devant n'importe quel nombre négatif le rend positif.
Exemple : Tirage 3,2,-1, pour trouver 7, réaliser le calcul 3*2-(-1)=7
Exemple : Tirage 3,2,1, pour trouver 7, réaliser le calcul 3*2+1=7
Les versions physiques du jeu ont 24 plaques :
| 1 à 10 | 2 exemplaires |
| 25, 50, 75 et 100 | 1 exemplaire |
Plusieurs problèmes mathématiques sont inspirés du compte est bon :
La suite 1, 2, 4, 10, 29, 76, 284, 1413, 7187, 38103, 231051, 1765186, 10539427 ici est définie par a(1)=1 et a(n) le plus petit entier positif qui ne peut pas être obtenu à partir des entiers de 0 à n-1, en utilisant chaque nombre au maximum une fois et les opérateurs +, -, ×, et /.
Exemple : Pour n=4, les nombres autorisés sont 0, 1, 2 et 3 et il est possible de trouver 4=1+3, 5=2+3, 6=2*3, 7=2*3+1, 8=(1+3)*2, 9=(1+2)*3, mais impossible de trouver 10, donc a(4) = 10.
La suite 1, 2, 4, 11, 34, 152, 1007, 7335, 85761, 812767 ici est définie par a(1)=1 et a(n) le plus petit entier positif qui ne peut pas être obtenu à partir des entiers a(i) avec i < n-1.
Exemple : Pour n=4, les nombres autorités sont 1,2,4, il est possible de trouver 5=1+4, 6=2+4, 7=1+2+4, 8=2*4, 9=2*4+1, 10=(1+4)*2, mais impossible de trouver 11, donc a(4) = 11.
La suite 1, 2, 4, 11, 34, 152, 1143, 8285, 98863, 1211572 ici est similaire mais autorise les résultats intermédiaires non entiers.
Le tirage 1, 2, 4, 11, 34, 152 permet de trouver toutes les solutions de 1 à 1006.
dCode se réserve la propriété du code source pour "Le Compte Est Bon". Tout algorithme pour "Le Compte Est Bon", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Le Compte Est Bon" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Le Compte Est Bon" ou tout autre élément ne sont pas publics (sauf licence open source explicite). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Le Compte Est Bon" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source (Licence de libre diffusion Creative Commons CC-BY).
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Le Compte Est Bon sur dCode.fr [site web en ligne], consulté le 12/12/2025,