Search for a tool
Unknowns in Triangle

Tool to find unknowns in a triangle. Resolving triangle equations allows to solve all unknowns in the triangle knowing only 2 or 3 characteristic values.

Results

Unknowns in Triangle -

Tag(s) : Geometry

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Unknowns in Triangle' tool for free! Thank you!

Unknowns in Triangle

Triangle Unknown Values Calculator

triangle
Enter all known informations of the triangle (a minimum of 3 should be enough data) to calculate other unknown values.













See also: Equation Solver

Answers to Questions (FAQ)

What are unknown in a triangle? (Definition)

A triangle can be defined by its 3 side lengths or its 3 vertex angles, its area, its perimeter or a mixture of these values. These values are very dependent on each other, so if some are unknown, the unknowns of the triangle can therefore be calculated from the known values.

How to find angles, perimeter or area knowing the 3 sides?

Considering the three sides $ a $, $ b $ and $ c $ are known in the triangle (any).

Calculation formula for the 3 angles (unknown values), the area and the perimeter are:

$$ \alpha = \arccos\left( \frac{b^2+c^2-a^2}{2bc} \right) $$

$$ \beta = \arccos\left( \frac{c^2+a^2-b^2}{2ca} \right) $$

$$ \gamma = \arccos\left( \frac{a^2+b^2-c^2}{2ab} \right) $$

$$ \mathcal{A} = \frac14\sqrt{(a+b+c)(a+b-c)(-a+b+c)(a-b+c)} $$

$$ \mathcal{P} = a+b+c $$

How to calculate knowing 1 angle and the 2 adjacent sides?

Considering one angle $ \gamma $ and its adjacent sides $ a $ and $ b $ are known in the triangle.

Calculation formula for the 2 other angles, the opposite side, the area and the perimeter are:

$$ c = \sqrt{a^2+b^2-2ab\cos\gamma} $$

$$ \alpha = \frac\pi2 - \frac\gamma2 + \arctan\left(\frac{a-b}{(a+b)\tan\frac\gamma2}\right) $$

$$ \beta = \frac\pi2 - \frac\gamma2 - \arctan\left(\frac{a-b}{(a+b)\tan\frac\gamma2}\right) $$

$$ \mathcal{A} = \frac12 ab\sin\gamma $$

$$ \mathcal{P} = a+b+\sqrt{a^2+b^2-2ab\cos\gamma} $$

How to calculate knowing 1 angle, the opposite side and 1 adjacent side?

Considering 1 angle $ \beta $, its adjacent sides $ c $ and the opposite side $ b $ are known in the triangle.

If $ \beta $ is acute and $ b < c $ then calculation formula for the 2 other angles, the last adjacent side, the area and the perimeter are:

$$ a = c\cos\beta-\sqrt{b^2-c^2\sin^2\beta} $$

$$ \gamma = \pi-\arcsin\left(\frac{c\sin\beta}b\right) $$

$$ \alpha = -\beta + \arcsin\left(\frac{c\sin\beta}b\right) $$

$$ \mathcal{A} = \frac 12 c\left(\sqrt{b^2-c^2\sin^2\beta}-c\cos\beta\right)\sin\beta $$

$$ \mathcal{P} = c\cos\beta-\sqrt{b^2-c^2\sin^2\beta}+b+c $$

If $ \beta $ is not acute or if $ b >= c $ then calculation formula for the 2 other angles, the last adjacent side, the area and the perimeter are:

$$ a = \sqrt{b^2-c^2\sin^2\beta}+c\cos\beta $$

$$ \alpha = \pi-\beta-\arcsin\left(\frac{c\sin\beta}b\right) $$

$$ \gamma = \arcsin \left(\frac{c\sin\beta}b\right) $$

$$ \mathcal{A} = \frac 12c\left(\sqrt{b^2-c^2\sin^2\beta}+c\cos\beta\right)\sin\beta $$

$$ \mathcal{P} = \sqrt{b^2-c^2\sin^2\beta}+c\cos\beta+b+c $$

How to calculate knowing 2 angles and the common side?

Considering the 2 angles $ \alpha $ and $ \beta $ and their common side $ c $ are known in the triangle.

Calculation formula for the 2 other sides, the last angle, the area and the perimeter are:

$$ a = \frac {c\sin\alpha}{\sin(\alpha+\beta)} $$

$$ b = \frac {c\sin\beta}{ \sin(\alpha+\beta)} $$

$$ \gamma = \pi-\alpha-\beta\ $$

$$ \mathcal{A} = \frac12 c^2 \, \frac{\sin\alpha\sin\beta}{\sin(\alpha+\beta)} $$

$$ \mathcal{P} = \frac {c ( \sin\alpha + \sin\beta )}{ \sin(\alpha+\beta)} + c $$

How to calculate knowing 2 angles and 1 non-common side?

Considering the 2 angles $ \alpha $ and $ \beta $ and one of their non common side $ a $ are known in the triangle.

Calculation formula for the 2 other sides, the last angle, the area and the perimeter are:

$$ b = \frac{a\sin\beta}{\sin\alpha} $$

$$ c = \frac{a\sin(\alpha+\beta)}{\sin\alpha} $$

$$ \gamma = \pi-\alpha-\beta $$

$$ \mathcal{A} = \frac12 a^2 \, \frac{\sin(\alpha+\beta)\sin\beta}{\sin\alpha} $$

$$ \mathcal{P} = a + \frac{a(\sin\beta+\sin(\alpha+\beta))}{\sin\alpha} $$

How to calculate knowing the area, 1 angle and 1 adjacent side?

Considering the area $ \mathcal{A} $, the angle $ \gamma $ and one adjacent side $ a $ are known in the triangle.

Calculation formula for the 2 other sides, the other 2 angles and the perimeter are:

$$ b = \frac{2\mathcal{A}}{a\sin\gamma} $$

$$ c = \frac{1}{a} \sqrt{a^2-\frac{4 \mathcal{A}}{\tan{\gamma}}+\frac{4 \mathcal{A}^2}{a^2\sin{\gamma}^2}} $$

$$ \alpha = \frac{1}{2} \left(\pi -\gamma +2 \arctan{\frac{a-\frac{2 \mathcal{A}}{a \sin\gamma}}{\left(a+\frac{2 \mathcal{A}}{a\sin\gamma}\right)\tan{\frac{\gamma}{2}}}}\right) $$

$$ \beta = \frac{1}{2} \left(\pi -\gamma -2 \arctan{\frac{a-\frac{2 \mathcal{A}}{a \sin\gamma}}{\left(a+\frac{2 \mathcal{A}}{a\sin\gamma}\right)\tan{\frac{\gamma}{2}}}}\right) $$

$$ \mathcal{P} = \frac{1}{a} \left( a^2 + \frac{2\mathcal{A}}{\sin\gamma} + \sqrt{a^2-\frac{4 \mathcal{A}}{\tan{\gamma}}+\frac{4 \mathcal{A}^2}{a^2\sin\gamma^2}} \right) $$

How to calculate knowing the area, 1 angle and the opposite side?

Considering the area $ \mathcal{A} $, the angle $ \alpha $ and one adjacent side $ a $ are known in the triangle.

Calculation formula for the 2 other sides, the other 2 angles and the perimeter are:

$$ b = \frac{1}{\sqrt{2}}\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} $$

$$ c = \frac{1}{\sqrt{2}}\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} $$

$$ \beta = \arcsin\left(\frac{2\sqrt{2}\mathcal{A}}{a\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}}}\right) $$

$$ \gamma = \arcsin\left(\frac{2\sqrt{2}\mathcal{A}}{a\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}}}\right) $$

$$ \mathcal{P} = a+\frac{1}{\sqrt{2}}\left( \sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} +\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} \right) $$

How to calculate knowing the area and 2 sides?

Considering the area $ \mathcal{A} $ and the two sides $ b $ and $ c $ are known in the triangle.

Calculation formula for the last side, the 3 angles and the perimeter are:

$$ a = \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}} $$

$$ \alpha = \arccos\left(-\frac{\sqrt{b^2 c^2-4 \mathcal{A}^2}}{b c}\right) $$

$$ \beta = \arccos\left(\frac{2 c^2+2 \sqrt{2+b^2 c^2-4 \mathcal{A}}}{2 c \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}}}\right) $$

$$ \gamma = \arccos\left(\frac{2 b^2+2 \sqrt{b^2 c^2-4 \mathcal{A}}}{2 b \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}}}\right) $$

$$ \mathcal{P} = \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}} + b + c $$

How to simplify calculations knowing the triangle is isosceles?

Considering the triangle is isosceles in $ A $.

The 2 sides forming the angle $ \alpha $ are equals $$ b = c $$

The 2 angles that are adjacent to the third side $ a $ are equals $$ \beta = \gamma $$

Example: If $ b = 3 $ and $ \beta = \frac{\pi}{6} $, Then $ c = 3 $ and $ \gamma = \frac{\pi}{6} $

How to simplify calculations knowing the triangle is rectangle?

Considering the triangle is rectangle in $ C $.

The angle $ \gamma $ is right $$ \gamma = 90° = \frac\pi2 $$

The sum of the 2 other angles is equal to 90° $$ \alpha + \beta = 90° = \frac\pi2 $$

The Pythagorean theorem can be applied $$ a^2 + b^2 = c^2 $$

The area of the triangle can be simplified as $$ \mathcal{A} = \frac{ab}{2} $$

How to simplify calculations knowing the triangle is equilateral?

Considering the triangle is equilateral. Take into account these equations:

The 3 sides are equal $$ a = b = c $$

The 3 angles are equal to 60° $$ \alpha = \beta = \gamma = 60° = \frac\pi3 $$

The perimeter can be simplified as $$ \mathcal{P} = 3a = 3b = 3c $$

Source code

dCode retains ownership of the "Unknowns in Triangle" source code. Except explicit open source licence (indicated Creative Commons / free), the "Unknowns in Triangle" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Unknowns in Triangle" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Unknowns in Triangle" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

Cite dCode

The copy-paste of the page "Unknowns in Triangle" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Unknowns in Triangle on dCode.fr [online website], retrieved on 2024-05-08, https://www.dcode.fr/unknowns-triangle

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Unknowns in Triangle' tool for free! Thank you!


https://www.dcode.fr/unknowns-triangle
© 2024 dCode — El 'kit de herramientas' definitivo para resolver todos los juegos/acertijos/geocaching/CTF.
 
Feedback