Search for a tool
Adjoint Matrix

Tool to compute an Adjoint Matrix for a square matrix. Adjoint/Adjugate/Adjacency Matrix is name given to the transpose of the cofactors matrix.

Results

Adjoint Matrix -

Tag(s) : Matrix

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Adjoint Matrix' tool for free! Thank you!

Adjoint Matrix

Adjugate Matrix Calculator (NxN)

Loading...
(if this message do not disappear, try to refresh this page)

Answers to Questions (FAQ)

What is an adjugate matrix? (Definition)

A square matrix $ M $ has for adjugate/adjoint matrix $ \operatorname{Adj}(M) = ^{\operatorname{t}}\operatorname{Cof}(M) $ that is the transpose of the cofactors matrix of $ M $.

How to compute the adjugate matrix?

The adjoint matrix $ \operatorname{Adj} $ of the square matrix $ M $ is computed $ ^{\operatorname t}\operatorname{Cof} $ as the transpose of the cofactors matrix of $ M $.

To calculate the cofactors matrix $ \operatorname{Cof}(M) $, compute, for each value of the matrix in position $ (i,j) $, the determinant of the associated sub-matrix $ SM $ (called minor) and multiply with a $ -1 $ factor depending on the position in the matrix.

$$ \operatorname{Cof}_{i,j} = (-1)^{i+j}\operatorname{Det}(SM_i) $$

To get the adjoint matrix, take the transposed matrix of the calculated cofactor matrix.

Formula for a 2x2 matrix:

$$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$

$$ \operatorname{Cof}(M) = \begin{bmatrix} {{d}} & {{-c}} \\ {{-b}} & {{a}} \end{bmatrix} $$

$$ \operatorname{Adj}(M) = \begin{bmatrix} {{d}} & {{-b}} \\ {{-c}} & {{a}} \end{bmatrix} $$

Example: $$ M = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \Rightarrow \operatorname{Cof}(M) = \begin{bmatrix} {{1}} & {{-2}} \\ {{-3}} & {{4}} \end{bmatrix} \Rightarrow \operatorname{Adj}(M) = \begin{bmatrix} {{1}} & {{-3}} \\ {{-2}} & {{4}} \end{bmatrix} $$

Formula for a 3x3 matrix:

$$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} $$

$$ \operatorname{Cof}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$

$$ \operatorname{Adj}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} b & c \\ e & f \end{vmatrix} \\ & & \\ -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} \\ & & \\ +\begin{vmatrix} d & e \\ g & h \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$

What is the difference between the Adjugate and Adjoint Matrix?

Adjugate matrix, adjoint matrix or adjunct matrix are the same.

Source code

dCode retains ownership of the "Adjoint Matrix" source code. Except explicit open source licence (indicated Creative Commons / free), the "Adjoint Matrix" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Adjoint Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Adjoint Matrix" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

Cite dCode

The copy-paste of the page "Adjoint Matrix" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Adjoint Matrix on dCode.fr [online website], retrieved on 2024-12-21, https://www.dcode.fr/adjoint-matrix

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Adjoint Matrix' tool for free! Thank you!


https://www.dcode.fr/adjoint-matrix
© 2024 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
 
Feedback