Tool to compute an Adjoint Matrix for a square matrix. Adjoint/Adjugate/Adjacency Matrix is name given to the transpose of the cofactors matrix.
Adjoint Matrix - dCode
Tag(s) : Matrix
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
A square matrix $ M $ has for adjugate/adjoint matrix $ \operatorname{Adj}(M) = ^{\operatorname{t}}\operatorname{Cof}(M) $ that is the transpose of the cofactors matrix of $ M $.
The adjoint matrix $ \operatorname{Adj} $ of the square matrix $ M $ is computed $ ^{\operatorname t}\operatorname{Cof} $ as the transpose of the cofactors matrix of $ M $.
To calculate the cofactors matrix $ \operatorname{Cof}(M) $, compute, for each value of the matrix in position $ (i,j) $, the determinant of the associated sub-matrix $ SM $ (called minor) and multiply with a $ -1 $ factor depending on the position in the matrix.
$$ \operatorname{Cof}_{i,j} = (-1)^{i+j}\operatorname{Det}(SM_i) $$
To get the adjoint matrix, take the transposed matrix of the calculated cofactor matrix.
Formula for a 2x2 matrix:
$$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$
$$ \operatorname{Cof}(M) = \begin{bmatrix} {{d}} & {{-c}} \\ {{-b}} & {{a}} \end{bmatrix} $$
$$ \operatorname{Adj}(M) = \begin{bmatrix} {{d}} & {{-b}} \\ {{-c}} & {{a}} \end{bmatrix} $$
Example: $$ M = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \Rightarrow \operatorname{Cof}(M) = \begin{bmatrix} {{1}} & {{-2}} \\ {{-3}} & {{4}} \end{bmatrix} \Rightarrow \operatorname{Adj}(M) = \begin{bmatrix} {{1}} & {{-3}} \\ {{-2}} & {{4}} \end{bmatrix} $$
Formula for a 3x3 matrix:
$$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} $$
$$ \operatorname{Cof}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$
$$ \operatorname{Adj}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} b & c \\ e & f \end{vmatrix} \\ & & \\ -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} \\ & & \\ +\begin{vmatrix} d & e \\ g & h \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$
Adjugate matrix, adjoint matrix or adjunct matrix are the same.
dCode retains ownership of the "Adjoint Matrix" source code. Any algorithm for the "Adjoint Matrix" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Adjoint Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Adjoint Matrix" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Adjoint Matrix" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source.
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Adjoint Matrix on dCode.fr [online website], retrieved on 2025-04-16,