Tool to compute an Adjoint Matrix for a square matrix. Adjoint/Adjugate/Adjacency Matrix is name given to the transpose of the cofactors matrix.
Adjoint Matrix - dCode
Tag(s) : Matrix
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
A square matrix $ M $ has for adjugate/adjoint matrix $ \operatorname{Adj}(M) = ^{\operatorname{t}}\operatorname{Cof}(M) $ that is the transpose of the cofactors matrix of $ M $.
The adjoint matrix $ \operatorname{Adj} $ of the square matrix $ M $ is computed $ ^{\operatorname t}\operatorname{Cof} $ as the transpose of the cofactors matrix of $ M $.
To calculate the cofactors matrix $ \operatorname{Cof}(M) $, compute, for each value of the matrix in position $ (i,j) $, the determinant of the associated sub-matrix $ SM $ (called minor) and multiply with a $ -1 $ factor depending on the position in the matrix.
$$ \operatorname{Cof}_{i,j} = (-1)^{i+j}\operatorname{Det}(SM_i) $$
To get the adjoint matrix, take the transposed matrix of the calculated cofactor matrix.
Formula for a 2x2 matrix:
$$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$
$$ \operatorname{Cof}(M) = \begin{bmatrix} {{d}} & {{-c}} \\ {{-b}} & {{a}} \end{bmatrix} $$
$$ \operatorname{Adj}(M) = \begin{bmatrix} {{d}} & {{-b}} \\ {{-c}} & {{a}} \end{bmatrix} $$
Example: $$ M = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \Rightarrow \operatorname{Cof}(M) = \begin{bmatrix} {{1}} & {{-2}} \\ {{-3}} & {{4}} \end{bmatrix} \Rightarrow \operatorname{Adj}(M) = \begin{bmatrix} {{1}} & {{-3}} \\ {{-2}} & {{4}} \end{bmatrix} $$
Formula for a 3x3 matrix:
$$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} $$
$$ \operatorname{Cof}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$
$$ \operatorname{Adj}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} b & c \\ e & f \end{vmatrix} \\ & & \\ -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} \\ & & \\ +\begin{vmatrix} d & e \\ g & h \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$
Adjugate matrix, adjoint matrix or adjunct matrix are the same.
dCode retains ownership of the "Adjoint Matrix" source code. Except explicit open source licence (indicated Creative Commons / free), the "Adjoint Matrix" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Adjoint Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Adjoint Matrix" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.
The copy-paste of the page "Adjoint Matrix" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Adjoint Matrix on dCode.fr [online website], retrieved on 2024-12-21,