Search for a tool
Cantor Expansion

Tool to calculate the Cantor expansion of a number (sum of factorial), thanks to its representation in factorial base.

Results

Cantor Expansion -

Tag(s) : Arithmetics

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Cantor Expansion' tool for free! Thank you!

Cantor Expansion

Cantor Expansion Calculator


See also: Factorial Base

Answers to Questions (FAQ)

What is a Cantor Expansion? (Definition)

The Cantor Expansion of a natural number $ n $ is a sum of the form $$ n = (k_m)m! + (k_{m-1})(m-1)! + \cdots + k_{2}2! + k_{1}1! $$ with integers $ k_i $ such as $ 0 \leq k_i \leq i $

Example: 12 = 2*3! + 0*2! + 0*1!

This is the explicit sum of the factor base of the number $ n $.

How to calculate the Cantor expansion of a number?

Start by converting the number to a factorial basis (by performing successive divisions of $ n $ by $ i $ for the numbers from $ 1 $ to $ n $, as long as the quotient of the Euclidean division is non-zero) and add figures (in factorial basis) obtained by multiplying them by the corresponding factorial.

Example: In base 10, $ 123 $ can be decomposed as $ 1 \times 100 + 2 \times 10 + 3 \times 1 $

Example: In factorial base, $ 234_{10} = 14300_{!} = 1 \times 5! + 4 \times 4! + 3 \times 3! + 0 \times 2! + 0*1! $

What is Cantor expansion algorithm?

To code the conversion of a decimal number into a factorial base, here is an algorithm function decimal2cantor(x) {
n = 1
a = []
while (x != 0) {
a[n] = x mod (n+1)
x = (x-a[n])/(n+1)
n++
}
return a[n]
}

Cantor's expansion can be deduced by a[n]*n! + a[n−1]*(n-1)! + ... + a[2]*2! + a[1]*1!

To code the conversion of a number written in factorial base into a decimal number, here is an algorithm:function cantor2decimal(a[n]) {
x = 0
for i=n to 1 {
x = x + a[i]
x = i*x
}
return x
}

Source code

dCode retains ownership of the "Cantor Expansion" source code. Any algorithm for the "Cantor Expansion" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Cantor Expansion" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Cantor Expansion" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Cantor Expansion" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source. Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link: https://www.dcode.fr/cantor-expansion
In a scientific article or book, the recommended bibliographic citation is: Cantor Expansion on dCode.fr [online website], retrieved on 2025-04-16, https://www.dcode.fr/cantor-expansion

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Cantor Expansion' tool for free! Thank you!


https://www.dcode.fr/cantor-expansion
© 2025 dCode — The ultimate collection of tools for games, math, and puzzles.
 
Feedback