Tool for calculating the value of the argument of a complex number. The argument of a nonzero complex number $ z $ is the value (in radians) of the angle $ \theta $ between the abscissa of the complex plane and the line formed by $ (0;z) $.
Complex Number Argument - dCode
Tag(s) : Arithmetics, Geometry
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
The argument is an angle $ \theta $ qualifying the complex number $ z $ in the complex plane is noted arg or Arg is calculated with the formula:
$$ \arg(z) = 2\arctan \left( \frac{\Im(z)}{\Re(z) + |z|} \right) = \theta \mod 2\pi $$
with $ \Re(z) $ the real part, $ \Im(z) $ the imaginary part and $ |z| $ the complex modulus of $ z $.
To determine the argument of a complex number $ z $, apply the above formula to find $ \arg(z) $.
Example: Take $ z = 1+i $, the real part is $ 1 $, the imaginary part is $ 1 $ and the modulus of the complex number $ |z| $ equals $ \sqrt(2) $, so $ \arg(z) = 2 \arctan \left( \frac{1}{1 + \sqrt(2) } \right) = \frac{\pi}{4} $
The result of the $ \arg(z) $ calculation is a value between $ -\pi $ and $ +\pi $ and the theta value is modulo $ 2\pi $
In electricity, the argument is equivalent to the phase (and the module is the effective value).
Take $ z $, $ z_1 $ and $ z_2 $ be non-zero complex numbers and $ n $ is a natural integer. The remarkable properties of the argument function are:
$ \arg( z_1 \times z_2 ) \equiv \arg(z_1) + \arg(z_2) \mod 2\pi $
$ \arg( z^n ) \equiv n \times \arg(z) \mod 2\pi $
$ \arg( \frac{1}{z} ) \equiv -\arg(z) \mod 2\pi $
$ \arg( \frac{z_1}{z_2} ) \equiv \arg(z_1) - \arg(z_2) \mod 2\pi $
If $ a $ is a strictly positive real and $ b $ a strictly negative real, then
$ \arg(a \cdot z) \equiv \arg(z) \mod 2\pi $
$ \arg(b \cdot z) \equiv \arg(z) +\pi \mod 2\pi $
Some arguments are trivial (argument of 1, argument of -1, argument of i, argument of -i, etc.) and can be memorized:
— $ \arg( 1 ) = 0 $
— $ \arg( 2 ) = 0 $
— $ \arg( n ) = 0 $ (with $ n $ a positive real number)
— $ \arg( -1 ) = \pi $
— $ \arg( -2 ) = \pi $
— $ \arg( -n ) = \pi $ (with $ n $ a non zero positive real number)
— $ \arg( i ) = \pi / 2 $
— $ \arg( - i ) = - \pi / 2 $
— $ \arg( 1+i ) = \pi / 4 $
— $ \arg( 1-i ) = - \pi / 4 $
— $ \arg( -1+i ) = 3 \pi / 4 $
— $ \arg( -1-i ) = - 3 \pi / 4 $
The argument of $ 0 $ is $ 0 $ (the number 0 has a real and complex part of zero and therefore a null argument).
If the argument of a complex number is $ \arg(z) = 0 $ then the number has no imaginary part (it is a real number).
The argument is an angle, usually in radians. The angles repeat every $ 2 \pi $ so there is an infinite number of them.
The principal/main argument is the one between $ -\pi $ and $ \pi $ (but some people take the one between $ 0 $ and $ 2 \pi $)
To calculate the main argument from a non-principal argument add or subtract $ 2 \pi $ as many times as necessary (modulo $ 2 \pi $ calculation)
dCode always calculates the principal argument.
dCode retains ownership of the "Complex Number Argument" source code. Any algorithm for the "Complex Number Argument" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Complex Number Argument" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Complex Number Argument" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Complex Number Argument" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source.
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Complex Number Argument on dCode.fr [online website], retrieved on 2025-04-16,