Tool to calculate a Kronecker matrix product in computer algebra. The Kronecker product is a special case of tensor multiplication on matrices.
Kronecker Product - dCode
Tag(s) : Matrix
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
For $ M_1=[a_{ij}] $ a matrix/tensor with $ m $ lines and $ n $ columns and $ M_2=[b_{ij}] $ a matrix with $ p $ lines and $ q $ columns. The Kronecker product is noted with a symbol: a circled cross ⊗. $ M_1 \otimes M_2 = [c_{ij}] $ is a larger matrix of $ m \times p $ lines and $ n \times q $ columns, with: $$ \forall i, j: c_{ij} = a_{ij}.B $$
Example: $$ M=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \otimes \begin{bmatrix} 7 & 8 \\ 9 & 10 \end{bmatrix} = \begin{bmatrix} 7 & 8 & 14 & 16 & 21 & 24 \\ 9 & 10 & 18 & 20 & 27 & 30 \\ 28 & 32 & 35 & 40 & 42 & 48 \\ 36 & 40 & 45 & 50 & 54 & 60 \end{bmatrix} $$
This product is not equivalent to the classical multiplication">matrix product, $ M_1 \otimes M_2 \neq M_1 \dot M_2 $
The Kronecker product supports associativity:
$$ A \otimes (B+ \lambda\ \cdot C) = (A \otimes B) + \lambda (A \otimes C) \\ (A + \lambda\ \cdot B) \otimes C = (A \otimes C) + \lambda (B \otimes C) \\ A \otimes ( B \otimes C) = (A \otimes B) \otimes C \\ (A \otimes B) (C \otimes D) = (A C) \otimes (B D) $$
But Kronecker product is non-commutative
$$ A \otimes B \neq B \otimes A $$
Kronecker product has also some distributivity properties:
— Distributivity over matrix transpose: $ ( A \otimes B )^T = A^T \otimes B^T $
— Distributivity over matrix traces: $ \operatorname{Tr}( A \otimes B ) = \operatorname{Tr}( A ) \operatorname{Tr}( B ) $
— Distributivity over matrix determinants: $ \operatorname{det}( A \otimes B ) = \operatorname{det}( A )^{m} \operatorname{det}( B )^{n} $
The name is a tribute to the German mathematician Leopold Kronecker.
dCode retains ownership of the "Kronecker Product" source code. Any algorithm for the "Kronecker Product" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Kronecker Product" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Kronecker Product" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Kronecker Product" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source.
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Kronecker Product on dCode.fr [online website], retrieved on 2025-04-16,