Tool for calculating the Hermite normal form (by reducing a matrix to its row echelon form) from a matrix M (with coefficients in Z) the computation yields 2 matrices H and U such that $ H = U . M $.
Hermite Normal Form Matrix - dCode
Tag(s) : Matrix
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
A matrix $ M $ of size $ n \times m $ with integer coefficients (natural or relative) has a Hermite decomposition if there exists a triangular matrix $ H $ and a unimodular matrix $ U $ such that $ H = U. M $. Reminder: An upper triangular matrix $ H $ is such that $ H_ {i, j} = 0 $ for $ i> j $ and a unimodular matrix is an invertible square matrix with integer coefficients whose determinant is $ \pm 1 $.
Example: $$ M = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow H = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix}, U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} $$
There are two forms for the Hermite matrix, an upper triangular matrix such that $ H = UM $ (also called Hermite's normal form row style) is a lower triangular matrix such that $ H = MU $ ( also called Hermite normal form column style)
dCode uses the LLL algorithm (Lenstra-Lenstra-Lovász) to calculate the Hermite decomposition (the calculation by hand is not recommended)
A normal Hermite-shaped matrix is the triangular scaled matrix $ H $ calculated by the Hermite decomposition (above) via reduction to row echelon form of the matrix.
dCode retains ownership of the "Hermite Normal Form Matrix" source code. Any algorithm for the "Hermite Normal Form Matrix" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Hermite Normal Form Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Hermite Normal Form Matrix" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Hermite Normal Form Matrix" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source.
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Hermite Normal Form Matrix on dCode.fr [online website], retrieved on 2025-04-16,