Search for a tool
Transpose of a Matrix

Tool to compute the transpose of a matrix. The transpose of a matrix M of size mxn is a matrix denoted tM of size nxm created by swapping lines and columns.

Results

Transpose of a Matrix -

Tag(s) : Matrix

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Transpose of a Matrix' tool for free! Thank you!

Transpose of a Matrix

Matrix Transpose Calculator NxN

Loading...
(if this message do not disappear, try to refresh this page)

Answers to Questions (FAQ)

How to calculate the transpose of a matrix?

The transposition of a matrix (or transpose of matrix) is one of the most basic matrix operations to perform. The transpose of a matrix consists of inverting the rows with the columns:

$$ \text{ If } M = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix} \text{ Then } M^T = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} $$

The lines are read from left to right and are transposed from top to bottom.

Example: $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow M^t = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} $$

The transposition of a matrix $ M $ is noted $ M^t $ or $ ^tM $. The transposition operation is then noted with an exponent T or t (uppercase or lowercase) prefixed or postfixed.

The transposition is valid on both square matrices and rectangular matrices. A transposed row vector is a column vector and vice versa.

What is a double transposition?

Transposing twice a matrix returns it unchanged.

The double transposition is the name given to a cryptographic cipher.

What is the transpose of a row matrix or a column matrix?

The transpose of a column matrix is a line matrix of the same size and vice versa.

Example: The transpose from $ \begin{bmatrix} a \\ b \end{bmatrix} $ is $ \begin{bmatrix} a & b \end{bmatrix} $

Example: The transpose from $ \begin{bmatrix} a & b \end{bmatrix} $ is $ \begin{bmatrix} a \\ b \end{bmatrix} $

Source code

dCode retains ownership of the "Transpose of a Matrix" source code. Any algorithm for the "Transpose of a Matrix" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Transpose of a Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Transpose of a Matrix" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Transpose of a Matrix" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source. Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link: https://www.dcode.fr/matrix-transpose
In a scientific article or book, the recommended bibliographic citation is: Transpose of a Matrix on dCode.fr [online website], retrieved on 2025-04-16, https://www.dcode.fr/matrix-transpose

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Transpose of a Matrix' tool for free! Thank you!


https://www.dcode.fr/matrix-transpose
© 2025 dCode — The ultimate collection of tools for games, math, and puzzles.
 
Feedback