Tool to compute the transpose of a matrix. The transpose of a matrix M of size mxn is a matrix denoted tM of size nxm created by swapping lines and columns.
Transpose of a Matrix - dCode
Tag(s) : Matrix
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
The transposition of a matrix (or transpose of matrix) is one of the most basic matrix operations to perform. The transpose of a matrix consists of inverting the rows with the columns:
$$ \text{ If } M = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix} \text{ Then } M^T = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} $$
The lines are read from left to right and are transposed from top to bottom.
Example: $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow M^t = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} $$
The transposition of a matrix $ M $ is noted $ M^t $ or $ ^tM $. The transposition operation is then noted with an exponent T or t (uppercase or lowercase) prefixed or postfixed.
The transposition is valid on both square matrices and rectangular matrices. A transposed row vector is a column vector and vice versa.
Transposing twice a matrix returns it unchanged.
The double transposition is the name given to a cryptographic cipher.
The transpose of a column matrix is a line matrix of the same size and vice versa.
Example: The transpose from $ \begin{bmatrix} a \\ b \end{bmatrix} $ is $ \begin{bmatrix} a & b \end{bmatrix} $
Example: The transpose from $ \begin{bmatrix} a & b \end{bmatrix} $ is $ \begin{bmatrix} a \\ b \end{bmatrix} $
dCode retains ownership of the "Transpose of a Matrix" source code. Any algorithm for the "Transpose of a Matrix" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Transpose of a Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Transpose of a Matrix" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Transpose of a Matrix" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source.
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Transpose of a Matrix on dCode.fr [online website], retrieved on 2025-04-16,