Search for a tool
Négabinary

Tool to convert numbers with negabinary. The Negabinary system allows to represent positive and negative numbers without bit sign in a binary format (0 and 1) using the base -2.

Results

Négabinary -

Tag(s) : Informatics, Arithmetics

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Négabinary' tool for free! Thank you!

Négabinary

Negabinary to Decimal Converter



See also: Binary Code

Decimal to Negabinary Converter



See also: Base N Convert

Binary to Negabinary Converter



See also: Binary Code

Answers to Questions (FAQ)

What is negabinary? (Definition)

Negabinary writing corresponds to a base $ -2 $ numeral system.

How to convert a decimal number into negabinary?

The numbers in the negabinary system are described by the formula:

$$ \sum_{i=0}^{n}b_{i}(-2)^{i} $$

With $ b $ a bit and $ i $ its rank in the inverted negabinary development (ordered from the end to the beginning).

To convert an integer, it is enough to make a division repeated by $ -2 $ and to concatenate the obtained remainders starting with the end.

Example: 12 (decimal) in negabinary is written 11100 (its successive remainders are 0,0,1,1,1 :

12 / -2 = -6remainder 0-6*-2 = 12
-6 / -2 = 3remainder 03*-2 = -6
3 / -2 = -1remainder 1-1*-2 = 2 and 2+1 = 3
-1 / -2 = 1remainder 11*-2=-2 and -2+1 = -1
1 / -2 = 0remainder 10*-2 = 0 and 0+1 = 1

How to convert a Negabinary number to Decimal?

To convert a number from base $ -2 $ to base 10, apply numeric base change algorithms.

Example: 110 (negabinary) is equivalent to 2 (base 10) $ 1 \times (-2)^2 + 1 \times (-2)^1 + 0 \times (-2)^0 = 2 $

How to recognize a positive or negative integer in negabinary?

In nega-binary, negative integers(with a minus sign in base 10) have an even number of bits, while the positive integers(with a plus sign in base 10) have an odd number of bits.

Source code

dCode retains ownership of the "Négabinary" source code. Except explicit open source licence (indicated Creative Commons / free), the "Négabinary" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Négabinary" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Négabinary" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

Cite dCode

The copy-paste of the page "Négabinary" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Négabinary on dCode.fr [online website], retrieved on 2024-11-21, https://www.dcode.fr/negabinary-system

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Négabinary' tool for free! Thank you!


https://www.dcode.fr/negabinary-system
© 2024 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
 
Feedback