Search for a tool
Neville Interpolating Polynomial

Tool to find a curve equation via the Neville-Aikten algorithm. The Neville interpolating polynomial method is a polynomial approximation to obtain the equation of a curve by knowing some coordinates of it.

Results

Neville Interpolating Polynomial -

Tag(s) : Functions

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Neville Interpolating Polynomial' tool for free! Thank you!

Neville Interpolating Polynomial

Interpolation of Polynomial by Neville


Loading...
(if this message do not disappear, try to refresh this page)

Extrapolation


Answers to Questions (FAQ)

How to find the equation of a curve using Neville algorithm?

dCode implement the method of Neville for Polynomial interpolation to find an equation by knowing some of its points $ (x_i, y_i) $.

Example: Points (0,0),(2,4),(4,16) can be interpolated to find the original equation : x^2

The interpolated polynomial is calculated by the Neville algorithm for n distinct points. (This algorithm can be represented as a pyramid, at each step a term disappears until having a single final result).

— Create polynomials $ P_i $ of degree 0 for each point $ x_i, y_i $ with $ i = 1,2,...,n $, this is equivalent to $ P_i (x) = y_i $.

Example: $ P_1 = 0 $, $ P_2 = 4 $, $ P_3 = 16 $

— For each consecutive $ P_i $ and $ P_j $ calculate $$ P_{ij}(x) = \frac{(x_j-x)P_i(x) + (x-x_i)P_j(x)}{x_j-x_i} $$

Example: $ P_{12} = \frac{(2-x)0 + (x-0)4}{2-0} = 2x $, $ P_{23} = \frac{(4-x)4 + (x-2)16}{4-2} = \frac{16-4x+16x-32}{2} = 6x-8 $

— Repeat this last step until having a single polynomial.

Example: $ P_{1(2)3} = \frac{(4-x)(2x) + (x-0)(6x-8)}{4-0} = \frac{8x-2x^2 + 6x^2 -8x}{4} = x^2 $

What are the limits for Interpolating with Neville?

Calculations are costful so the program is limited to 25 points with distinct x-coordinate in the set Q.

Source code

dCode retains ownership of the "Neville Interpolating Polynomial" source code. Except explicit open source licence (indicated Creative Commons / free), the "Neville Interpolating Polynomial" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Neville Interpolating Polynomial" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Neville Interpolating Polynomial" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

Cite dCode

The copy-paste of the page "Neville Interpolating Polynomial" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Neville Interpolating Polynomial on dCode.fr [online website], retrieved on 2025-01-18, https://www.dcode.fr/neville-interpolating-polynomial

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Neville Interpolating Polynomial' tool for free! Thank you!


https://www.dcode.fr/neville-interpolating-polynomial
© 2025 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
 
Feedback