Tool for decrypting / encrypting codes representing matrix drawings on a numeric keypad from a computer keyboard or a telephone 123456789.
Numeric Keypad Draw - dCode
Tag(s) : Substitution Cipher, Informatics
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
Encryption with a numeric keypad consists of drawing each character via a 3x3 (or 3x4) dot matrix symbolized by the keypad itself (the numbers pad usually to the right of the keyboard).
Example: To encrypt the letters D,C,O,D,E, imagine using the numeric keypad of a computer and the keys 78 | 89 | 789 | 78 | 789
4 5 | 4 | 4 6 | 4 5 | 45
12 | 23 | 123 | 12 | 123
The order of the keys is usually not important, but can help to recognize the drawn character.
Example: D can be encoded 124578
The computer numeric keypad and mobile/cell phone keypad have inverted digits (123 is at the bottom for one and at the top for the other one). The phone mode also accepts the characters * (star), 0 (zero) and # (pound). The other keys are ignored (Num lock, +, -, *, /).
Decryption requires the knowledge of the numeric keypad used and to note the keys in order to deduce the drawing of a character.
Example: From the message 1478965,14789635,147862, can be infered the drawings:
thus, the plain message is PAD.
789 | 789 | 78
456 | 456 | 4 5
1 | 1 3 | 12
The message consists of the characters of a numeric keypad, namely 123456789*0#
Numeric codes that draw a symbol on a 3x3 9-digit grid are limited:
1-digit combinations
Example: 1, 2, 3, 4, 5, 6, 7, 8, 9
2-digit combinations
Example: 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89
3-digit combinations
Example: 123, 124, 125, 126, 127, 128, 129, 134, 135, 136, 137, 138, 139, 145, 146, 147, 148, 149, 156, 157, 158, 159, 167, 168, 169, 178, 179, 189, 234, 235, 236, 237, 238, 239, 245, 246, 247, 248, 249, 256, 257, 258, 259, 267, 268, 269, 278, 279, 289, 345, 346, 347, 348, 349, 356, 357, 358, 359, 367, 368, 369, 378, 379, 389, 456, 457, 458, 459, 467, 468, 469, 478, 479, 489, 567, 568, 569, 578, 579, 589, 678, 679, 689, 789
4-digit combinations
Example: 1234, 1235, 1236, 1237, 1238, 1239, 1245, 1246, 1247, 1248, 1249, 1256, 1257, 1258, 1259, 1267, 1268, 1269, 1278, 1279, 1289, 1345, 1346, 1347, 1348, 1349, 1356, 1357, 1358, 1359, 1367, 1368, 1369, 1378, 1379, 1389, 1456, 1457, 1458, 1459, 1467, 1468, 1469, 1478, 1479, 1489, 1567, 1568, 1569, 1578, 1579, 1589, 1678, 1679, 1689, 1789, 2345, 2346, 2347, 2348, 2349, 2356, 2357, 2358, 2359, 2367, 2368, 2369, 2378, 2379, 2389, 2456, 2457, 2458, 2459, 2467, 2468, 2469, 2478, 2479, 2489, 2567, 2568, 2569, 2578, 2579, 2589, 2678, 2679, 2689, 2789, 3456, 3457, 3458, 3459, 3467, 3468, 3469, 3478, 3479, 3489, 3567, 3568, 3569, 3578, 3579, 3589, 3678, 3679, 3689, 3789, 4567, 4568, 4569, 4578, 4579, 4589, 4678, 4679, 4689, 4789, 5678, 5679, 5689, 5789, 6789
5-digit combinations
Example: 12345, 12346, 12347, 12348, 12349, 12356, 12357, 12358, 12359, 12367, 12368, 12369, 12378, 12379, 12389, 12456, 12457, 12458, 12459, 12467, 12468, 12469, 12478, 12479, 12489, 12567, 12568, 12569, 12578, 12579, 12589, 12678, 12679, 12689, 12789, 13456, 13457, 13458, 13459, 13467, 13468, 13469, 13478, 13479, 13489, 13567, 13568, 13569, 13578, 13579, 13589, 13678, 13679, 13689, 13789, 14567, 14568, 14569, 14578, 14579, 14589, 14678, 14679, 14689, 14789, 15678, 15679, 15689, 15789, 16789, 23456, 23457, 23458, 23459, 23467, 23468, 23469, 23478, 23479, 23489, 23567, 23568, 23569, 23578, 23579, 23589, 23678, 23679, 23689, 23789, 24567, 24568, 24569, 24578, 24579, 24589, 24678, 24679, 24689, 24789, 25678, 25679, 25689, 25789, 26789, 34567, 34568, 34569, 34578, 34579, 34589, 34678, 34679, 34689, 34789, 35678, 35679, 35689, 35789, 36789, 45678, 45679, 45689, 45789, 46789, 56789
6-digit combinations
Example: 123456, 123457, 123458, 123459, 123467, 123468, 123469, 123478, 123479, 123489, 123567, 123568, 123569, 123578, 123579, 123589, 123678, 123679, 123689, 123789, 124567, 124568, 124569, 124578, 124579, 124589, 124678, 124679, 124689, 124789, 125678, 125679, 125689, 125789, 126789, 134567, 134568, 134569, 134578, 134579, 134589, 134678, 134679, 134689, 134789, 135678, 135679, 135689, 135789, 136789, 145678, 145679, 145689, 145789, 146789, 156789, 234567, 234568, 234569, 234578, 234579, 234589, 234678, 234679, 234689, 234789, 235678, 235679, 235689, 235789, 236789, 245678, 245679, 245689, 245789, 246789, 256789, 345678, 345679, 345689, 345789, 346789, 356789, 456789
7-digit combinations
Example: 1234567, 1234568, 1234569, 1234578, 1234579, 1234589, 1234678, 1234679, 1234689, 1234789, 1235678, 1235679, 1235689, 1235789, 1236789, 1245678, 1245679, 1245689, 1245789, 1246789, 1256789, 1345678, 1345679, 1345689, 1345789, 1346789, 1356789, 1456789, 2345678, 2345679, 2345689, 2345789, 2346789, 2356789, 2456789, 3456789
8-digit combinations
Example: 12345678, 12345679, 12345689, 12345789, 12346789, 12356789, 12456789, 13456789, 23456789
9-digit combination
Example: 123456789
dCode retains ownership of the "Numeric Keypad Draw" source code. Any algorithm for the "Numeric Keypad Draw" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Numeric Keypad Draw" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Numeric Keypad Draw" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.
The content of the page "Numeric Keypad Draw" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source.
Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link:
In a scientific article or book, the recommended bibliographic citation is: Numeric Keypad Draw on dCode.fr [online website], retrieved on 2025-04-16,