Search for a tool
Prime Counting Function

Tool for counting prime numbers via the prime-counting function denoted pi(n) which counts the prime numbers less than or equal to a real number n.

Results

Prime Counting Function -

Tag(s) : Arithmetics

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Prime Counting Function' tool for free! Thank you!

Prime Counting Function

Prime Counter π(n) Function Calculator


Nth Prime Calculator

Answers to Questions (FAQ)

What is the counting prime function? (Definition)

The counting prime numbers function, called $ \pi(n) $, aims to count the prime numbers less than or equal to a number $ n $.

How to calculate pi(n)?

For small numbers, the easiest method to count all the first primes less than $ n $ is to use the Eratosthenes sieve to quickly list prime numbers.

Example: $ \pi(100) = 25 $ as there are 25 prime numbers less than 100.

How to calculate an approximation of pi(n)?

The value of pi(n) approaches $ n / \ln(n) $ when $ n $ tends to infinity (ie. $ n / \ln(n) $ is a good approximation of $ pi(n) $ when $ n $ is very large)

$$ \pi(n)\ \underset{ n \to \infty }{ \sim } \frac{n}{\ln(n)} $$

This formula is also called the prime number theorem.

What is pi(n) for?

The calculation of pi(n) allows to locate a prime number with respect to another, knowing its rank in the list of prime numbers.

If $ \pi(a) < \pi(b) $ then $ a < b $.

How to get an estimation of the nth prime number?

A consequence of the prime number theorem is that the nth prime number $ p_n $ is close to $ n \ln(n) $ (and closer when $ n $ is very large) $$ p_n \underset{ n \to \infty }{ \sim } n \ln (n) $$

Source code

dCode retains ownership of the "Prime Counting Function" source code. Any algorithm for the "Prime Counting Function" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Prime Counting Function" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Prime Counting Function" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Prime Counting Function" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source. Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link: https://www.dcode.fr/prime-number-pi-count
In a scientific article or book, the recommended bibliographic citation is: Prime Counting Function on dCode.fr [online website], retrieved on 2025-04-16, https://www.dcode.fr/prime-number-pi-count

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Prime Counting Function' tool for free! Thank you!


https://www.dcode.fr/prime-number-pi-count
© 2025 dCode — The ultimate collection of tools for games, math, and puzzles.
 
Feedback