Tool to compute a cube root. The cube root for a number N, is the number that, multiplied by itself than again by itself, equals N.
Cube Root - dCode
Tag(s) : Symbolic Computation, Functions
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
The cube root of a number $ n $ is any number $ x $ solution of the equation: $ x^3 = n $. The cube root of $ n $ is denoted $ \sqrt[3]{n} $ or $ n^{1/3} $.
Calculating a cubic root is not easy to do by hand except for usual values such as: $ \sqrt[3]{1} = 1 $, $ \sqrt[3]{8} = 2 $, $ \sqrt[3]{27} = 3 $, $ \sqrt[3]{64} = 4 $, $ \sqrt[3]{125} = 5 $, $ \sqrt[3]{1000} = 10 $
dCode software allows positive of negative numbers (complex roots) and answers an exact value or an approximate one (the precision can be adjusted by defining the precision: a minimum number of significant digits)
On a spreadsheet like Microsoft Excel, use the same formula as for a calculator, for a value in A1 write A1^(1/3) or POWER(A1;1/3)
The root simplifier will attempt to factor the expression under the root with a perfect cube.
Example: $ \sqrt[3]{8a} = 2\sqrt[3]{a} $ (the $ 8 $ has been extracted from the root)
A cubic number is the cube of an integer (cubed value).
Example: $ 2 $ is an integer, $ 2^3 = 2 \times 2 \times 2 = 8 $ then $ 8 $ is a square number.
If the cube root of a number $ x $ is an integer (relative, without decimal part), then $ x $ is a cubic number.
The first perfect cubes are:
1^3 | 1 |
2^3 | 8 |
3^3 | 27 |
4^3 | 64 |
5^3 | 125 |
6^3 | 216 |
7^3 | 343 |
8^3 | 512 |
9^3 | 729 |
10^3 | 1000 |
Cube root of 1 is 1 because $ \sqrt[3]1 = 1^{\frac{1}{3}} = 1 $
In some software, cbrt stands for cube root abbreviation cb of cube and rt for root, similar to sqrt for square root.
Example: cbrt(8)=2
The Unicode standard proposes the symbol U+221B ∛
In LaTeX language, write \sqrt[3]{x}
dCode retains ownership of the "Cube Root" source code. Except explicit open source licence (indicated Creative Commons / free), the "Cube Root" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Cube Root" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Cube Root" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.
The copy-paste of the page "Cube Root" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Cube Root on dCode.fr [online website], retrieved on 2024-12-19,