Search for a tool
Exponential

Tool to calculate the values of the exponential function exp(x) e(x) e^x and solve the calculations related to the function or the constant e=2.71818…

Results

Exponential -

Tag(s) : Functions

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Exponential' tool for free! Thank you!

Exponential

Exponential Calculator exp(n)=e^n


See also: Logarithm

Calculation/Simplification with Exponentials






Exponentiation Calculator a^b (Exponential of base a)

Answers to Questions (FAQ)

What is the exponential function? (Definition)

The definition of the exponential function is the solution of the equation $ f' = f $ with $ f(0) = 1 $, i.e. the function which is its own derivative and which has the value 1 at 0.

The exponential function is denoted by exp that is, by default, based on the number $ e \approx 2.71828\ldots $ (check also the decimals of the number e).

Example: $ \exp(7) = e^7 \approx 1096.633 $

exp

The $ e^x $ notation is sometimes ambiguous, because $ e $ may be used as a variable, prefer using the $ \exp(x) $ notation.

What are the properties of the exponential function?

The exponential has several remarkable properties

$ \exp(0) = 1 \\ \exp(1) = e \approx 2.71828\ldots \\ e^(x+y) = e^x \times e^y \\ (e^x)^b = e^{bx} \\ \ln(\exp(x)) = x \\ \exp(\ln(x)) = x $$

The derivative of the exponential function is the exponential function itself

$$ f(x) = \exp(x) \iff f'(x) = \exp(x) $$

The exponential is related to the exponentiation by the formula:

$$ a^b = e^{b\ln(a)} $$

In the complex plane, the exponential has several other properties (complex exponential form):

$$ \exp(i x) = \cos x + i \sin x \\ \exp(a + i b) = \exp(a) ( \cos b + i \sin b ) $$

The exponential function can be defined as a series expansion based on factorial and exponentiation:

$$ \exp(x)=\sum _{{n=0}}^{{\infty }}{x^{n} \over n!} $$

Source code

dCode retains ownership of the "Exponential" source code. Any algorithm for the "Exponential" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Exponential" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Exponential" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Exponential" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source. Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link: https://www.dcode.fr/exponential
In a scientific article or book, the recommended bibliographic citation is: Exponential on dCode.fr [online website], retrieved on 2025-04-16, https://www.dcode.fr/exponential

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Exponential' tool for free! Thank you!


https://www.dcode.fr/exponential
© 2025 dCode — The ultimate collection of tools for games, math, and puzzles.
 
Feedback