Search for a tool
Von Mangoldt Function

Tool to calculate von Mangoldt Lambda Λ function values. Mangoldt's Λ function is an arithmetic function with properties related to prime numbers.

Results

Von Mangoldt Function -

Tag(s) : Arithmetics

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Von Mangoldt Function' tool for free! Thank you!

Von Mangoldt Function

Lambda Λ(n) Calculator


See also: Logarithm

Answers to Questions (FAQ)

What is the Von Mangoldt Lambda function? (Definition)

The function $ \Lambda (n) $ (called Mangoldt Lambda) is defined by: $$ \Lambda (n)= {\begin{cases}\ln(p) & {\mbox{if }}n=p^{k} \\ 0 & {\mbox{else}} \end{cases} } $$

with $ p $ a prime number and $ k \in \mathbb{N}, k \geq 1 $ (a nonzero positive integer).

This is the natural logarithm $ \log (n) = \ln (n) $

Example: The values of $ \Lambda (n) $ for the first values of $ n $ are:

nΛ(n)
10
2$ \ln 2 $
3$ \ln 3 $
4$ \ln 2 $
5$ \ln 5 $
6$ 0 $
7$ \ln 7 $
8$ \ln 2 $
9$ \ln 3 $

What are the first Lambda function values?

The values of $ \Lambda (n) $ for the first values of $ n $ are:

nΛ(n)
10
2$ \ln 2 $
3$ \ln 3 $
4$ \ln 2 $
5$ \ln 5 $
6$ 0 $
7$ \ln 7 $
8$ \ln 2 $
9$ \ln 3 $

It is possible to calculate the values of $ \exp{\Lambda}(n) $ in order to always obtain integers, see the OEIS sequence here

What are the properties of the Von Mangoldt Lambda function?

By its definition, the Von Mangoldt Lambda function $ \Lambda (n) $ allows to describe the value of the natural logarithm $ \ln n $ : $$ \ln n=\sum _{d\mid n}\Lambda (d) $$ with $ d $ a natural integer that divides $ n $.

Example: $$ \begin{align}\sum_{d \mid 8} \Lambda(d) &= \Lambda(1) + \Lambda(2) + \Lambda(4) + \Lambda(8) \\ &= \Lambda(1) + \Lambda(2) + \Lambda (2^2) + \Lambda(2^3) \\ &= 0 + \ln(2) + \ln(2) + \ln(2) \\ &=\ln (2 \times 2 \times 2) \\ &= \ln(8) \end{align} $$

What is the link with the Euler–Mascheroni gamma constant?

The Hans Von Mangoldt Lambda function can be used to calculate $ \gamma $ the Euler-Mascheroni constant with the la formula: $$ \sum_{n=2}^{\infty}{\frac{\Lambda(n)-1}{n}}=-2\gamma $$

Source code

dCode retains ownership of the "Von Mangoldt Function" source code. Any algorithm for the "Von Mangoldt Function" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Von Mangoldt Function" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Von Mangoldt Function" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Von Mangoldt Function" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source. Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link: https://www.dcode.fr/mangoldt-lambda
In a scientific article or book, the recommended bibliographic citation is: Von Mangoldt Function on dCode.fr [online website], retrieved on 2025-04-16, https://www.dcode.fr/mangoldt-lambda

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Von Mangoldt Function' tool for free! Thank you!


https://www.dcode.fr/mangoldt-lambda
© 2025 dCode — The ultimate collection of tools for games, math, and puzzles.
 
Feedback