Search for a tool
Eigenspaces of a Matrix

Tool to calculate eigenspaces associated to eigenvalues of any size matrix (also called vectorial spaces Vect).

Results

Eigenspaces of a Matrix -

Tag(s) : Matrix

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Eigenspaces of a Matrix' tool for free! Thank you!

Eigenspaces of a Matrix

Eigenspaces Calculator


Loading...
(if this message do not disappear, try to refresh this page)

Eigenvalues Calculator

Eigenvectors Calculator

Answers to Questions (FAQ)

What is an eigenspace of an eigen value of a matrix? (Definition)

For a matrix $ M $ having for eigenvalues $ \lambda_i $, an eigenspace $ E $ associated with an eigenvalue $ \lambda_i $ is the set (the basis) of eigenvectors $ \vec{v_i} $ which have the same eigenvalue.

That is to say the kernel (or nullspace) of $ M - I \lambda_i $.

How to calculate the eigenspaces associated with an eigenvalue?

For an eigenvalue $ \lambda_i $, calculate the matrix $ M - I \lambda_i $ (with I the identity matrix) (also works by calculating $ I \lambda_i - M $) and calculate for which set of vector $ \vec{v} $, the product of my matrix by the vector is equal to the null vector $ \vec{0} $

Example: The 2x2 matrix $ M = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} $ has eigenvalues $ \lambda_1 = -3 $ and $ \lambda_2 = 1 $, the computation of the proper set associated with $ \lambda_1 $ is $ \begin{bmatrix} -1 + 3 & 2 \\ 2 & -1 + 3 \end{bmatrix} . \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $ which has for solution $ v_1 = -v_2 $. The eigenspace $ E_{\lambda_1} $ is therefore the set of vectors $ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} $ of the form $ a \begin{bmatrix} -1 \\ 1 \end{bmatrix} , a \in \mathbb{R} $. The vector space is written $ \text{Vect} \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\} $

How to build a basis for an eigenspace?

To construct a basis for an eigenspace associated with its eigenvalues $ \lambda $ and its corresponding eigenvectors $ \vec{v} $, select a linearly independent set of these vectors.

This set of linearly independent vectors forms a basis of the eigenspace.

Source code

dCode retains ownership of the "Eigenspaces of a Matrix" source code. Any algorithm for the "Eigenspaces of a Matrix" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Eigenspaces of a Matrix" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Eigenspaces of a Matrix" or any other element are not public (except explicit open source licence like Creative Commons). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Eigenspaces of a Matrix" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source. Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).
To cite dCode.fr on another website, use the link: https://www.dcode.fr/matrix-eigenspaces
In a scientific article or book, the recommended bibliographic citation is: Eigenspaces of a Matrix on dCode.fr [online website], retrieved on 2025-04-16, https://www.dcode.fr/matrix-eigenspaces

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Eigenspaces of a Matrix' tool for free! Thank you!


https://www.dcode.fr/matrix-eigenspaces
© 2025 dCode — The ultimate collection of tools for games, math, and puzzles.
 
Feedback