Search for a tool
Series Expansion

Tool to calculate series expansions (Taylor, etc.) allowing an approximation of a mathematical function or expression.

Results

Series Expansion -

Tag(s) : Functions

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Series Expansion' tool for free! Thank you!

Series Expansion

Series Expansion Calculator





Answers to Questions (FAQ)

What is a series expansion? (Definition)

In mathematics, a series expansion of a function in the vicinity of a defined point is a polynomial expression allowing an approximation of this function. The limited expansion is therefore composed of a polynomial function (sum of polynomials) and a remainder which is small (or negligible) around the point.

How to calculate a series expansion?

To compute a (limited) series expansion of order $ n $ of a function $ f(x) $ in the neighborhood of a value $ a $, if the function is differentiable in $ a $, then it is possible to use the Taylor-Young formula which decomposes any function into:

$$ f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^{n} + O(x^{n+1}) \\ = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} + O(x^{n+1}) $$

with $ O(x^n) $ the Big O (Landau's asymptotic notation) indicating precision, a value tending to be negligible with respect to $ (x-a)^n $ in the neighborhood of $ a $.

Example: The exponential function (having an nth derivative easy to calculate) has a limited series expansion in $ 0 $: $ \exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + O(x^n) $$

What are the series expansion of the usual functions?

Here is a form of the usual Taylor/Maclaurin series to know:

Exponential function (exp) and logarithm functions (ln or log):

$$ \begin{aligned} \exp(x) &= \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + O(x^n+1) \\ \ln(1-x) &= -\sum_{n=1}^{\infty} \frac{x^n}{n} \\ &= -x- \frac{x^2}{2} - \frac{x^3}{3} - \cdots - \frac{x^n}{n} + O(x^n+1) \\ \ln(1+x) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \\ &= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + (-1)^{n+1} \frac{x^n}{n} + O(x^n+1) \end{aligned} $$

— Power and root functions (sqrt):

$$ \begin{aligned} (1+x)^a &= \sum_{n=0}^{\infty}\binom{a}{n} x^n \\ &= \sum_{n=0}^{\infty} x^n \prod _{k=1}^{n}{\frac {\alpha -k+1}{k}} \\ &= 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \cdots + \frac{a(a-1)(a-2)\cdots(a-n+1)}{n!}x^n + O(x^n+1) \\ (1+x)^{1/2} &= \sqrt{1+x} \\ &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 + \cdots \\ (1+x)^{-1/2} &= \frac{1}{\sqrt{1+x}} \\ &= 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots \end{aligned} $$

Inverse functions

$$ \begin{aligned} \frac{1}{1+x} &= \sum_{n=0}^{\infty} (-1)^n x^n \\ &= 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + O(x^n) \\ \frac{1}{(1+x)^2} &= \sum_{n=0}^{\infty} (-1)^n nx^{n-1} \\ &= 1 - 2x + 3x^2 - \cdots + (-1)^n nx^{n-1} + O(x^n) \\ \frac{1}{1-x} &= \sum_{n=0}^{\infty} x^{n} \\ &= 1 + x + x^2 + \cdots + x^n + O(x^n) \\ \frac{1}{(1-x)^2} &= \sum_{n=1}^{\infty} nx^{n-1} \\ &= 1 + 2x + 3x^2 + \cdots + nx^{n-1} + O(x^n) \end{aligned} $$

— Trigonometric functions (cosine, sine, tangent)

$$ \begin{aligned} \cos(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} \\ &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + \frac{(-1)^n}{(2n)!} x^{2n} + O(x^{2n+1}) \\ \sin(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \\ &= x - \frac{x^3}{3!} + \frac{x^{5}}{5!} - \cdots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + O(x^{2n+2}) \\ \tan(x) &= \sum^{\infty}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} \\ &= x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!} x^{2n-1} + O(x^{2n}) \\ \sec(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} \\ &= 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \cdots + \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} + O(x^{2n+1}) \end{aligned} $$

with $ E_n $ the Euler numbers.

— Complementary and reciprocal trigonometric functions

$$ \begin{aligned} \arccos(x) &= \frac{\pi}{2} - \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ &= \frac{\pi}{2} - x - \frac{x^3}{2 imes 3} - \frac{1 \times 3 \times x^5}{2 \times 4 \times 5} - \cdots - \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) \\ \arcsin(x) &= \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ &= x + \frac{x^3}{2 \times 3} + \frac{1 \times 3 \times x^5}{2 \times 4 \times 5} + \cdots + \frac{1 \times 3 imes 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) \\ \arctan(x) &= \sum^{\infty}_{n=0} (-1)^{n}\frac{x^{2n+1}}{2n+1} \\ &= x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots + (-1)^{n}\frac{x^{2n+1}}{2n+1} + O(x^{2n+2}) \end{aligned} $$

— Hyperbolic and reciprocal trigonometric functions

$$ \begin{aligned} \cosh(x) &= \sum^{\infty}_{n=0} \frac{x^{2n}}{(2n)!} \\ &= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots + \frac{x^{2n}}{(2n)!} + O(x^{2n+1}) \\ \sinh(x) &= \sum^{\infty}_{n=0} \frac{x^{2n+1}}{(2n+1)!} \\ &= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots + \frac{x^{2n+1}}{(2n+1)!} + O(x^{2n+2}) \\ \tanh(x) &= \sum^{\infty}_{n=1} \frac{B_{2n} 4^n \left(4^n-1\right)}{(2n)!} x^{2n-1} \\ &= x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \cdots + \frac{B_{2n} 4^n (4^{n}-1)}{(2n)!} x^{2n-1} + O(x^{2n}) \\ \operatorname{asinh}(x) &= \sum^{\infty}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} \\ &= x - \frac{x^3}{2 \times 3} + \cdots +(-1)^{n} \frac{1 \times 3 \times 5 \cdots (2n-1)x^{2n+1}}{2 \times 4 \times 6 \cdots (2n) \times (2n+1)} + O(x^{2n+2}) \\ \operatorname{atanh}(x) &= \sum^{\infty}_{n=0} \frac{x^{2n+1}}{2n+1} \\ &= x + \frac{x^3}{3} + \cdots + \frac{x^{2n+1}}{2n+1} + O(x^{2n+2}) \end{aligned} $$

with $ B_n $ the Bernoulli numbers

Source code

dCode retains ownership of the "Series Expansion" source code. Except explicit open source licence (indicated Creative Commons / free), the "Series Expansion" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Series Expansion" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Series Expansion" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

Cite dCode

The copy-paste of the page "Series Expansion" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Series Expansion on dCode.fr [online website], retrieved on 2025-01-21, https://www.dcode.fr/series-expansion

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Series Expansion' tool for free! Thank you!


https://www.dcode.fr/series-expansion
© 2025 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
 
Feedback