Tool to find unknowns in a triangle. Resolving triangle equations allows to solve all unknowns in the triangle knowing only 2 or 3 characteristic values.
Unknowns in Triangle - dCode
Tag(s) : Geometry
dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!
A triangle can be defined by its 3 side lengths or its 3 vertex angles, its area, its perimeter or a mixture of these values. These values are very dependent on each other, so if some are unknown, the unknowns of the triangle can therefore be calculated from the known values.
Considering the three sides $ a $, $ b $ and $ c $ are known in the triangle (any).
Calculation formula for the 3 angles (unknown values), the area and the perimeter are:
$$ \alpha = \arccos\left( \frac{b^2+c^2-a^2}{2bc} \right) $$
$$ \beta = \arccos\left( \frac{c^2+a^2-b^2}{2ca} \right) $$
$$ \gamma = \arccos\left( \frac{a^2+b^2-c^2}{2ab} \right) $$
$$ \mathcal{A} = \frac14\sqrt{(a+b+c)(a+b-c)(-a+b+c)(a-b+c)} $$
$$ \mathcal{P} = a+b+c $$
Considering one angle $ \gamma $ and its adjacent sides $ a $ and $ b $ are known in the triangle.
Calculation formula for the 2 other angles, the opposite side, the area and the perimeter are:
$$ c = \sqrt{a^2+b^2-2ab\cos\gamma} $$
$$ \alpha = \frac\pi2 - \frac\gamma2 + \arctan\left(\frac{a-b}{(a+b)\tan\frac\gamma2}\right) $$
$$ \beta = \frac\pi2 - \frac\gamma2 - \arctan\left(\frac{a-b}{(a+b)\tan\frac\gamma2}\right) $$
$$ \mathcal{A} = \frac12 ab\sin\gamma $$
$$ \mathcal{P} = a+b+\sqrt{a^2+b^2-2ab\cos\gamma} $$
Considering 1 angle $ \beta $, its adjacent sides $ c $ and the opposite side $ b $ are known in the triangle.
If $ \beta $ is acute and $ b < c $ then calculation formula for the 2 other angles, the last adjacent side, the area and the perimeter are:
$$ a = c\cos\beta-\sqrt{b^2-c^2\sin^2\beta} $$
$$ \gamma = \pi-\arcsin\left(\frac{c\sin\beta}b\right) $$
$$ \alpha = -\beta + \arcsin\left(\frac{c\sin\beta}b\right) $$
$$ \mathcal{A} = \frac 12 c\left(\sqrt{b^2-c^2\sin^2\beta}-c\cos\beta\right)\sin\beta $$
$$ \mathcal{P} = c\cos\beta-\sqrt{b^2-c^2\sin^2\beta}+b+c $$
If $ \beta $ is not acute or if $ b >= c $ then calculation formula for the 2 other angles, the last adjacent side, the area and the perimeter are:
$$ a = \sqrt{b^2-c^2\sin^2\beta}+c\cos\beta $$
$$ \alpha = \pi-\beta-\arcsin\left(\frac{c\sin\beta}b\right) $$
$$ \gamma = \arcsin \left(\frac{c\sin\beta}b\right) $$
$$ \mathcal{A} = \frac 12c\left(\sqrt{b^2-c^2\sin^2\beta}+c\cos\beta\right)\sin\beta $$
$$ \mathcal{P} = \sqrt{b^2-c^2\sin^2\beta}+c\cos\beta+b+c $$
Considering the 2 angles $ \alpha $ and $ \beta $ and their common side $ c $ are known in the triangle.
Calculation formula for the 2 other sides, the last angle, the area and the perimeter are:
$$ a = \frac {c\sin\alpha}{\sin(\alpha+\beta)} $$
$$ b = \frac {c\sin\beta}{ \sin(\alpha+\beta)} $$
$$ \gamma = \pi-\alpha-\beta\ $$
$$ \mathcal{A} = \frac12 c^2 \, \frac{\sin\alpha\sin\beta}{\sin(\alpha+\beta)} $$
$$ \mathcal{P} = \frac {c ( \sin\alpha + \sin\beta )}{ \sin(\alpha+\beta)} + c $$
Considering the 2 angles $ \alpha $ and $ \beta $ and one of their non common side $ a $ are known in the triangle.
Calculation formula for the 2 other sides, the last angle, the area and the perimeter are:
$$ b = \frac{a\sin\beta}{\sin\alpha} $$
$$ c = \frac{a\sin(\alpha+\beta)}{\sin\alpha} $$
$$ \gamma = \pi-\alpha-\beta $$
$$ \mathcal{A} = \frac12 a^2 \, \frac{\sin(\alpha+\beta)\sin\beta}{\sin\alpha} $$
$$ \mathcal{P} = a + \frac{a(\sin\beta+\sin(\alpha+\beta))}{\sin\alpha} $$
Considering the area $ \mathcal{A} $, the angle $ \gamma $ and one adjacent side $ a $ are known in the triangle.
Calculation formula for the 2 other sides, the other 2 angles and the perimeter are:
$$ b = \frac{2\mathcal{A}}{a\sin\gamma} $$
$$ c = \frac{1}{a} \sqrt{a^2-\frac{4 \mathcal{A}}{\tan{\gamma}}+\frac{4 \mathcal{A}^2}{a^2\sin{\gamma}^2}} $$
$$ \alpha = \frac{1}{2} \left(\pi -\gamma +2 \arctan{\frac{a-\frac{2 \mathcal{A}}{a \sin\gamma}}{\left(a+\frac{2 \mathcal{A}}{a\sin\gamma}\right)\tan{\frac{\gamma}{2}}}}\right) $$
$$ \beta = \frac{1}{2} \left(\pi -\gamma -2 \arctan{\frac{a-\frac{2 \mathcal{A}}{a \sin\gamma}}{\left(a+\frac{2 \mathcal{A}}{a\sin\gamma}\right)\tan{\frac{\gamma}{2}}}}\right) $$
$$ \mathcal{P} = \frac{1}{a} \left( a^2 + \frac{2\mathcal{A}}{\sin\gamma} + \sqrt{a^2-\frac{4 \mathcal{A}}{\tan{\gamma}}+\frac{4 \mathcal{A}^2}{a^2\sin\gamma^2}} \right) $$
Considering the area $ \mathcal{A} $, the angle $ \alpha $ and one adjacent side $ a $ are known in the triangle.
Calculation formula for the 2 other sides, the other 2 angles and the perimeter are:
$$ b = \frac{1}{\sqrt{2}}\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} $$
$$ c = \frac{1}{\sqrt{2}}\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} $$
$$ \beta = \arcsin\left(\frac{2\sqrt{2}\mathcal{A}}{a\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}}}\right) $$
$$ \gamma = \arcsin\left(\frac{2\sqrt{2}\mathcal{A}}{a\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}}}\right) $$
$$ \mathcal{P} = a+\frac{1}{\sqrt{2}}\left( \sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}+a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} +\sqrt{a^2+\frac{4\mathcal{A}}{\tan\alpha}-a\sqrt{a^2-\frac{16\mathcal{A}^2}{a^2}+\frac{8\mathcal{A}}{\tan\alpha}}} \right) $$
Considering the area $ \mathcal{A} $ and the two sides $ b $ and $ c $ are known in the triangle.
Calculation formula for the last side, the 3 angles and the perimeter are:
$$ a = \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}} $$
$$ \alpha = \arccos\left(-\frac{\sqrt{b^2 c^2-4 \mathcal{A}^2}}{b c}\right) $$
$$ \beta = \arccos\left(\frac{2 c^2+2 \sqrt{2+b^2 c^2-4 \mathcal{A}}}{2 c \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}}}\right) $$
$$ \gamma = \arccos\left(\frac{2 b^2+2 \sqrt{b^2 c^2-4 \mathcal{A}}}{2 b \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}}}\right) $$
$$ \mathcal{P} = \sqrt{b^2+c^2+2 \sqrt{b^2 c^2-4 \mathcal{A}^2}} + b + c $$
Considering the triangle is isosceles in $ A $.
The 2 sides forming the angle $ \alpha $ are equals $$ b = c $$
The 2 angles that are adjacent to the third side $ a $ are equals $$ \beta = \gamma $$
Example: If $ b = 3 $ and $ \beta = \frac{\pi}{6} $, Then $ c = 3 $ and $ \gamma = \frac{\pi}{6} $
Considering the triangle is rectangle in $ C $.
The angle $ \gamma $ is right $$ \gamma = 90° = \frac\pi2 $$
The sum of the 2 other angles is equal to 90° $$ \alpha + \beta = 90° = \frac\pi2 $$
The Pythagorean theorem can be applied $$ a^2 + b^2 = c^2 $$
The area of the triangle can be simplified as $$ \mathcal{A} = \frac{ab}{2} $$
Considering the triangle is equilateral. Take into account these equations:
The 3 sides are equal $$ a = b = c $$
The 3 angles are equal to 60° $$ \alpha = \beta = \gamma = 60° = \frac\pi3 $$
The perimeter can be simplified as $$ \mathcal{P} = 3a = 3b = 3c $$
dCode retains ownership of the "Unknowns in Triangle" source code. Except explicit open source licence (indicated Creative Commons / free), the "Unknowns in Triangle" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Unknowns in Triangle" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Unknowns in Triangle" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.
The copy-paste of the page "Unknowns in Triangle" or any of its results, is allowed (even for commercial purposes) as long as you credit dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):
Unknowns in Triangle on dCode.fr [online website], retrieved on 2024-11-07,