Outil pour déchiffrer/chiffrer avec le chiffrement multiplicatif (Multiplicative Cipher) un chiffre par substitution basé sur une opération de multiplication.
Chiffrement Multiplicatif - dCode
Catégorie(s) : Chiffrement par Substitution
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Le chiffrement multiplicatif (ou Multiplicative Cipher en anglais) est un chiffrement Affine (ax+b) avec la valeur b nulle (égale à 0), donc une multiplication par $ a $.
Le chiffrement multiplicatif utilise une clé $ k $ (un nombre entier) et un alphabet.
Exemple : Chiffrer DCODE avec la clé $ k = 17 $ et l'alphabet de 26 lettres : ABCDEFGHIJKLMNOPQRSTUVWXYZ
A chaque lettre est associée son rang $ c $ dans l'alphabet (en partant de 0).
Exemple : D = 3, C = 2, O = 14, D = 3, E = 4
Pour chaque caractère du message clair, appliquer le calcul suivant :
$$ c \times k \mod 26 $$
($ 26 $ étant le nombre de lettres dans l'alphabet)
Le nombre obtenu indique le rang dans l'alphabet de la lettre chiffrée correspondante.
Exemple : D = 3, donc $ 3 \times 17 \mod 26 \equiv 25 $ et la lettre au rang 25 est Z. Ainsi de suite pour chaque lettre, le message chiffré final est ZIEZQ.
Le déchiffrement peut se réaliser de 2 manières :
— Mathématiquement, calculer l'inverse modulaire $ k^{-1} $ de la clé modulo 26 et appliquer le calcul pour chaque lettre :
$$ c \times k^{-1} \mod 26 $$
Exemple : La clé $ 17 $ a pour inverse modulo 26 la valeur $ 23 $ donc Z (index 25) devient $ 25 \times 23 \mod 26 \equiv 3 $ et 3 correspond à D dans l'alphabet.
— Par substitution, en effet, lors du chiffrement chaque lettre n'est associée qu'à une seule autre, en calculant toutes les associations possibles (en chiffrant les 26 lettres de l'alphabet) alors il est possible d'en déduire un alphabet de substitution qui servira de table de déchiffrement.
Pour que le chiffrement soit réversible (que le message puisse être déchiffré), il est nécessaire que la clé soit un nombre premier avec 26 (ou 26 est le nombre de lettre de l'alphabet).
Il existe donc un nombre infini de clés possibles, mais beaucoup donneront des messages identiques, car pour une clé $ k $, alors la clé $ k + 26 $ donne un chiffrement identique.
Le message est une substitution alphabétique, l'analyse des fréquence devrait permettre de retrouver les lettres les plus courantes.
L'indice de coincidence est inchangé par rapport au texte clair.
La lettre A reste inchangée et est toujours codée A
Pour un alphabet donné, il n'existe que peu de clés possibles.
L'alphabet latin de 26 lettre n'autorise que 11 clés : 3, 5, 7, 9, 11, 15, 17, 19, 21, 23 et 25 (ce sont les nombres premiers avec 26 et inférieurs à 26).
Clé | Alphabet de Substitution |
---|---|
3 | ADGJMPSVYBEHKNQTWZCFILORUX |
5 | AFKPUZEJOTYDINSXCHMRWBGLQV |
7 | AHOVCJQXELSZGNUBIPWDKRYFMT |
9 | AJSBKTCLUDMVENWFOXGPYHQZIR |
11 | ALWHSDOZKVGRCNYJUFQBMXITEP |
15 | APETIXMBQFUJYNCRGVKZODSHWL |
17 | ARIZQHYPGXOFWNEVMDULCTKBSJ |
19 | ATMFYRKDWPIBUNGZSLEXQJCVOH |
21 | AVQLGBWRMHCXSNIDYTOJEZUPKF |
23 | AXUROLIFCZWTQNKHEBYVSPMJGD |
25 | AZYXWVUTSRQPONMLKJIHGFEDCB |
Il existe d'autre nombres co-premiers avec 26 (qui sont supérieurs à 26) mais ils donnent des alphabets identiques à ceux-ci dessus.
Le chiffre multiplicatif est une simplification du chiffre Affine.
Le chiffrement multiplicatif n'a que peu d'intéret, mais il est souvent utilisé pour l'apprentissage de l'informatique et des chiffrements.
dCode se réserve la propriété du code source pour "Chiffrement Multiplicatif". Tout algorithme pour "Chiffrement Multiplicatif", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Chiffrement Multiplicatif" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Chiffrement Multiplicatif" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Chiffrement Multiplicatif" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Chiffrement Multiplicatif sur dCode.fr [site web en ligne], consulté le 17/04/2025,