Rechercher un outil
Conjecture de Syracuse

Outil pour tester la conjecture de Syracuse (ou Collatz ou 3n+1) et variantes qui divise un nombre par 2 si il est pair, sinon le multiplier par 3 et ajouter 1.

Résultats

Conjecture de Syracuse -

Catégorie(s) : Mathématiques, Fun/Divers

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Conjecture de Syracuse' gratuit ! Merci !

Conjecture de Syracuse

Test de la Conjecture de Syracuse 3n+1




Conjecture Personnalisée







Voir aussi : Nombre de Lychrel

Réponses aux Questions (FAQ)

Qu'est ce que la conjecture de Syracuse ? (Définition)

La conjecture de Syracuse (ou conjecture de Collatz) également connue sous le nom de problème 3n+1, stipule qu'en appliquant l'algorithme 3n+1 à n'importe quel nombre entier positif, on finira toujours par atteindre le nombre 1.

Qu'est ce que l'algorithme 3n+1 ? (Principe de Calcul)

Prendre un nombre $ n $ (entier positif non nul), si $ n $ est pair, le diviser par $ 2 $, sinon multiplier par $ 3 $ et ajouter $ 1 $. Recommencer en donnant à $ n $ la valeur du résultat précédemment obtenu.

Mathématiquement l'algorithme est défini par la fonction $ f $ : $$ f_{3n+1}(n) = \begin{cases}{ \frac{n}{2}} & {\text{si }}n \equiv 0 \mod{2} \\ 3n+1 & {\text{si }} n \equiv 1 \mod{2} \end{cases} $$

Exemple : $ n=10 $, $ 10 $ est pair, le diviser par $ 2 $ et obtenir $ 5 $,
$ 5 $ est impair le multiplier par $ 3 $ et ajouter $ 1 $ pour obtenir $ 16 $,
Continuer ainsi de suite pour obtenir $ 8 $, $ 4 $, $ 2 $ et enfin $ 1 $.

Lorsque la valeur $ 1 $ est obtenue, suite est généralement considérée comme terminée, car l'algorithme rendre dans une boucle infinie de 4, 2, 1, 4, 2, 1, 4, 2, 1.

Certains nombres ont des suites (appelées trajectoires) surprenantes comme 27, 255, 447, 639 ou 703.

Qu'est ce que la version compressée ?

Si le nombre $ n $ est impair, alors le multiplier par $ 3 $ et ajouter $ 1 $ le rend forcément pair, l'étape suivante est obligatoirement une division par 2.

La version compressée (ou raccourcie) fusionne les calculs $ 3x+1 $ et $ x/2 $ en une seule étape $ (3x+1)/2 $

Existe-t-il un nombre qui n'obéit pas à la conjecture de Syracuse ?

Non, personne n'a trouvé de nombre pour lequel ça ne fonctionne pas mais personne n'a trouvé de preuve mathématique que la conjecture fonctionne toujours.

C'est pourquoi la conjecture s'appelle aussi problème de Syracuse ou problème de Collatz et qu'il ne s'agit pas d'un théorème.

Toute personne trouvant un nombre qui ne termine pas à 1 aura alors résolu la conjecture en prouvant qu'elle est fausse.

La conjecture de Syracuse a-t-elle été résolue?

Non, il y a eu récemment quelques avancées réelles mais la conjecture de Syracuse demeure non résolue malgré des dizaines des pseudo-scientifiques qui ont prétendu avoir une preuve.

Quelles sont les propriétés remarquables de la conjecture ?

Un nombre n'apparait jamais 2 fois dans la suite.

Toute suite se termine par une série de puissance de 2.

Un nombre impair est toujours suivi d'un nombre pair.

Les nombres 5 et 32 donnent la même suite.

Comment coder la conjecture de Syracuse ?

Il existe plusieurs manière de programmer un code source pour l'algorithme 3x+1 :// Javascript
function step(n) {
if (n%2 == 0) return n/2;
return 3*n+1;
}
function collatz(n) {
var nb = 1;
while (n != 1) {
n = step(n);
nb++;
}
return nb;
}
// Python
def collatz(x):
while x != 1:
if x % 2 > 0:
x =((3 * x) + 1)
list_.append(x)
else:
x = (x / 2)
list_.append(x)
return list_

Quels sont les autres noms de la conjecture de Syracuse ?

D'autres noms de la conjecture/problème de Syracuse sont utilisés dans la littérature :

— conjecture de Collatz

— conjecture d'Ulam

— conjecture de Hailstone

— conjecture tchèque

— problème 3x+1 (ou 3n+1)

— algorithme de Hasse

— problème de Kakutani

— conjecture de Thwaite

Le nom de Syracuse proviendrait de l'Université de Syracuse, une ville de l'état de New York aux Etats-Unis.

Quels sont les nombres qui ont un temps de vol donné ?

Ce tableau regroupe tous les nombres jusqu'à 1000 sous la forme (temps de vol/iterations => nombres ayant ce temps de vol)

01
12
24
38
416
55, 32
610, 64
73, 20, 21, 128
86, 40, 42, 256
912, 13, 80, 84, 85, 512
1024, 26, 160, 168, 170
1148, 52, 53, 320, 336, 340, 341
1217, 96, 104, 106, 113, 640, 672, 680, 682
1334, 35, 192, 208, 212, 213, 226, 227
1411, 68, 69, 70, 75, 384, 416, 424, 426, 452, 453, 454
1522, 23, 136, 138, 140, 141, 150, 151, 768, 832, 848, 852, 853, 904, 906, 908, 909
167, 44, 45, 46, 272, 276, 277, 280, 282, 300, 301, 302
1714, 15, 88, 90, 92, 93, 544, 552, 554, 560, 564, 565, 600, 602, 604, 605
1828, 29, 30, 176, 180, 181, 184, 186, 201
199, 56, 58, 60, 61, 352, 360, 362, 368, 369, 372, 373, 401, 402, 403
2018, 19, 112, 116, 117, 120, 122, 704, 720, 724, 725, 736, 738, 739, 744, 746, 753, 802, 803, 804, 805, 806
2136, 37, 38, 224, 232, 234, 240, 241, 244, 245, 267
2272, 74, 76, 77, 81, 448, 464, 468, 469, 480, 482, 483, 488, 490, 497, 534, 535, 537
2325, 144, 148, 149, 152, 154, 162, 163, 896, 928, 936, 938, 960, 964, 965, 966, 976, 980, 981, 985, 994, 995
2449, 50, 51, 288, 296, 298, 304, 308, 309, 321, 324, 325, 326, 331
2598, 99, 100, 101, 102, 576, 592, 596, 597, 608, 616, 618, 625, 642, 643, 648, 650, 652, 653, 662, 663, 713, 715
2633, 196, 197, 198, 200, 202, 204, 205, 217
2765, 66, 67, 392, 394, 396, 397, 400, 404, 405, 408, 410, 433, 434, 435, 441, 475
28130, 131, 132, 133, 134, 784, 788, 789, 792, 794, 800, 808, 810, 816, 820, 821, 833, 857, 866, 867, 868, 869, 870, 875, 882, 883, 950, 951, 953, 955
2943, 260, 261, 262, 264, 266, 268, 269, 273, 289
3086, 87, 89, 520, 522, 524, 525, 528, 529, 532, 533, 536, 538, 546, 547, 555, 571, 577, 578, 579, 583, 633, 635
31172, 173, 174, 177, 178, 179
3257, 59, 344, 346, 348, 349, 354, 355, 356, 357, 358, 385, 423
33114, 115, 118, 119, 688, 692, 693, 696, 698, 705, 708, 709, 710, 712, 714, 716, 717, 729, 761, 769, 770, 771, 777, 846, 847
3439, 228, 229, 230, 236, 237, 238
3578, 79, 456, 458, 460, 461, 465, 472, 473, 474, 476, 477, 507, 513
36153, 156, 157, 158, 912, 916, 917, 920, 922, 930, 931, 943, 944, 945, 946, 947, 948, 949, 952, 954, 971, 987
37305, 306, 307, 312, 314, 315, 316, 317
38105, 610, 611, 612, 613, 614, 624, 628, 629, 630, 631, 632, 634, 647, 683, 687
39203, 209, 210, 211
40406, 407, 409, 418, 419, 420, 421, 422, 431, 455
41135, 139, 812, 813, 814, 817, 818, 819, 827, 836, 837, 838, 840, 841, 842, 843, 844, 845, 862, 863, 910, 911
42270, 271, 278, 279, 281, 287, 303
43540, 541, 542, 545, 551, 556, 557, 558, 561, 562, 563, 574, 575, 606, 607
44185, 187, 191
45361, 363, 367, 370, 371, 374, 375, 382, 383
46123, 127, 721, 722, 723, 726, 727, 734, 735, 740, 741, 742, 747, 748, 749, 750, 764, 765, 766, 809, 891
47246, 247, 249, 254, 255
48481, 489, 492, 493, 494, 498, 499, 508, 509, 510, 539
49169, 961, 962, 963, 969, 978, 979, 984, 986, 988, 989, 996, 997, 998, 999
50329, 338, 339, 359
51641, 657, 658, 659, 665, 676, 677, 678, 718, 719
52219, 225, 239
53427, 438, 439, 443, 450, 451, 478, 479
54159, 854, 855, 876, 877, 878, 886, 887, 900, 901, 902, 907, 956, 957, 958
55295, 318, 319
56569, 585, 590, 591, 601, 636, 637, 638
58379, 393, 425
59758, 759, 767, 779, 786, 787, 801, 849, 850, 851
60283
61505, 511, 519, 566, 567
63377
64673, 679, 681, 699, 711, 754, 755
65251
66502, 503
67167, 897, 905, 923
68334, 335
69111, 603, 615, 668, 669, 670
70222, 223
71444, 445, 446
72799, 807, 888, 890, 892, 893
73297
74593, 594, 595
76395
77790, 791, 793
78263
79526, 527
80175
81350, 351
82700, 701, 702
83233
84466, 467
85155, 839, 932, 933, 934, 939
86310, 311
87103, 559, 620, 621, 622
88206, 207
89412, 413, 414
90137, 745, 824, 826, 828, 829
91274, 275
9291, 548, 549, 550
93182, 183, 993
94364, 365, 366
95121, 671, 728, 730, 732, 733, 743
96242, 243
97447, 484, 485, 486, 495
98161, 894, 895, 968, 970, 972, 973, 977, 990, 991
99322, 323
100107, 644, 645, 646, 651
101214, 215
10271, 428, 429, 430
103142, 143, 795, 856, 858, 860, 861
10447, 284, 285, 286
10594, 95, 568, 570, 572, 573
10631, 188, 189, 190
10762, 63, 376, 378, 380, 381
108124, 125, 126, 752, 756, 757, 760, 762
10941, 248, 250, 252, 253
11082, 83, 496, 500, 501, 504, 506
11127, 164, 165, 166, 992, 1000
11254, 55, 328, 330, 332, 333, 337
113108, 109, 110, 656, 660, 661, 664, 666, 674, 675
114216, 218, 220, 221
11573, 432, 436, 437, 440, 442, 449
116145, 146, 147, 864, 872, 874, 880, 881, 884, 885, 898, 899, 903, 927
117290, 291, 292, 293, 294, 299
11897, 580, 581, 582, 584, 586, 587, 588, 589, 598, 599
119193, 194, 195, 199
120386, 387, 388, 389, 390, 391, 398, 399
121129, 772, 773, 774, 776, 778, 780, 781, 782, 783, 785, 796, 797, 798
122257, 258, 259, 265
123514, 515, 516, 517, 518, 521, 523, 530, 531
124171
125342, 343, 345, 347, 353
126684, 685, 686, 689, 690, 691, 694, 695, 697, 706, 707
127231, 235
128457, 459, 462, 463, 470, 471
129913, 914, 915, 918, 919, 921, 924, 925, 926, 929, 935, 940, 941, 942, 959
130313
131609, 617, 619, 623, 626, 627, 639
133411, 415, 417
134811, 815, 822, 823, 825, 830, 831, 834, 835
136543, 553
139731, 737, 751
141487, 491
142967, 974, 975, 982, 983
143327
144649, 654, 655, 667
147859, 865, 873, 879, 889
152763, 775
170703
173937
178871

Quelles sont les nombres qui ont une altitude maxi donnée ?

Ce tableau regroupe tous les nombres jusqu'à 1000 sous la forme (altitude maxi de vol => nombres ayant cette altitude maxi)

11
22
44
88
163, 5, 6, 10, 12, 16
2020
2424
3232
4013, 26, 40
4848
527, 9, 11, 14, 17, 18, 22, 28, 34, 36, 44, 52
5656
6421, 42, 64
6868
7272
8080
8484
8819, 25, 29, 38, 50, 58, 76, 88
9696
10033, 66, 100
104104
11237, 74, 112
116116
128128
132132
13645, 90, 136
144144
14849, 98, 148
152152
16015, 23, 30, 35, 46, 53, 60, 70, 92, 106, 120, 140, 160
168168
176176
180180
18461, 122, 184
192192
19643, 57, 65, 86, 114, 130, 172, 196
200200
20869, 138, 208
212212
224224
228228
23251, 77, 102, 154, 204, 232
240240
24481, 162, 244
25685, 170, 256
260260
264264
272272
276276
28093, 186, 280
288288
296296
30439, 59, 67, 78, 89, 101, 118, 134, 156, 178, 202, 236, 268, 304
308308
312312
320320
324324
336336
34075, 113, 150, 226, 300, 340
344344
352117, 234, 352
356356
360360
368368
372372
384384
392392
400133, 266, 400
404404
408408
416416
424141, 282, 424
44899, 149, 198, 298, 396, 448
452452
456456
464464
468468
472157, 314, 472
480480
488488
512512
520115, 153, 173, 230, 306, 346, 460, 520
528528
532177, 354, 532
536536
544181, 362, 544
552552
560560
564564
576576
59287, 131, 174, 197, 262, 348, 394, 524, 592
596596
600600
608608
612612
616205, 410, 616
624624
628123, 139, 185, 209, 246, 278, 370, 418, 492, 556, 628
640213, 426, 640
648648
672672
680680
688229, 458, 688
692692
696696
704704
708708
712237, 474, 712
720720
724241, 482, 724
736163, 217, 245, 326, 434, 490, 652, 736
740740
744744
768768
784261, 522, 784
788788
792792
800800
80879, 105, 119, 158, 179, 210, 238, 269, 316, 358, 420, 476, 538, 632, 716, 808
816816
820273, 546, 820
832277, 554, 832
836836
840840
848848
852852
868289, 578, 868
896896
904301, 602, 904
912912
916135, 203, 270, 305, 406, 540, 610, 812, 916
920920
928309, 618, 928
936936
944944
948948
952187, 211, 249, 281, 317, 374, 422, 498, 562, 634, 748, 844, 952
960960
964321, 642, 964
976325, 650, 976
980980
984984
996996
1024151, 201, 227, 302, 341, 402, 454, 604, 682, 804, 908
1048349, 698
1072357, 714
1108369, 738
1120373, 746
1156385, 770
1192397, 794
1204267, 401, 534, 802
1216405, 810
1264421, 842
1300433, 866
1360453, 906
1384307, 409, 461, 614, 818, 922
1396465, 930
1408469, 938
1432477, 954
1480493, 986
1492331, 441, 497, 662, 882, 994
1540513
1576525
1588529
1600315, 355, 473, 533, 630, 710, 946
1624541
1636363, 545, 726
1672219, 247, 329, 371, 438, 494, 557, 658, 742, 876, 988
1684561
1696565
1732577
1792597
1816403, 537, 605, 806
1840613
1876625
1888279, 419, 558, 629, 838
1960435, 653, 870
1972657
2080693
2116705
2128709
2152717
2164721
2176483, 725, 966
2224741
2248295, 393, 443, 499, 590, 665, 749, 786, 886, 998
2260753
2308769
2368789
2416805
2440813
2452817
2464547, 729, 821
2500555, 833
2512837
2536375, 563, 750, 845
2560853
2608579, 869
2632877
2728909
2752271, 361, 379, 407, 427, 481, 505, 542, 569, 611, 641, 673, 722, 758, 814, 854, 897, 917, 962
2836945
2848949
2884961
2896507, 571, 643, 761, 857, 965
2944981
2968439, 585, 659, 878, 989
2992997
3076303, 455, 606, 683, 910
3220423, 635, 715, 846, 953
3256723
3328739, 985
3472771
3508519, 779
3544699, 787
3616475, 535, 633, 713, 803, 950
3688819
3796843
3904867
3940583, 777, 875
3976883
4192367, 489, 551, 734, 827, 931, 978
4264631, 747, 841, 947
4336963
4372127, 169, 191, 225, 254, 287, 338, 339, 382, 431, 450, 451, 508, 509, 574, 601, 647, 676, 677, 678, 764, 765, 801, 862, 900, 901, 902, 971
4408979
4480663, 995
4804711
4840955
4912727, 969
5128759
5776855
5812603, 679, 905
5992591, 887
6424951
6964687
7504987
8080559, 745, 839, 993
8584847, 891
923227, 31, 41, 47, 54, 55, 62, 63, 71, 73, 82, 83, 91, 94, 95, 97, 103, 107, 108, 109, 110, 111, 121, 124, 125, 126, 129, 137, 142, 143, 145, 146, 147, 155, 159, 161, 164, 165, 166, 167, 171, 175, 182, 183, 188, 189, 190, 193, 194, 195, 199, 206, 207, 214, 215, 216, 218, 220, 221, 222, 223, 231, 233, 235, 239, 242, 243, 248, 250, 251, 252, 253, 257, 258, 259, 263, 265, 274, 275, 283, 284, 285, 286, 290, 291, 292, 293, 294, 297, 299, 310, 311, 313, 318, 319, 322, 323, 327, 328, 330, 332, 333, 334, 335, 337, 342, 343, 345, 347, 350, 351, 353, 359, 364, 365, 366, 376, 377, 378, 380, 381, 386, 387, 388, 389, 390, 391, 395, 398, 399, 411, 412, 413, 414, 415, 417, 425, 428, 429, 430, 432, 436, 437, 440, 442, 444, 445, 446, 449, 457, 459, 462, 463, 466, 467, 470, 471, 478, 479, 484, 485, 486, 487, 491, 496, 500, 501, 502, 503, 504, 506, 514, 515, 516, 517, 518, 521, 523, 526, 527, 530, 531, 539, 543, 548, 549, 550, 553, 566, 567, 568, 570, 572, 573, 580, 581, 582, 584, 586, 587, 588, 589, 593, 594, 595, 598, 599, 607, 609, 617, 619, 620, 621, 622, 623, 626, 627, 636, 637, 638, 644, 645, 646, 649, 651, 654, 655, 656, 660, 661, 664, 666, 668, 669, 670, 674, 675, 684, 685, 686, 689, 690, 691, 694, 695, 697, 700, 701, 702, 706, 707, 718, 719, 728, 730, 731, 732, 733, 737, 752, 754, 755, 756, 757, 760, 762, 763, 772, 773, 774, 775, 776, 778, 780, 781, 782, 783, 785, 790, 791, 793, 796, 797, 798, 809, 811, 815, 822, 823, 824, 825, 826, 828, 829, 830, 834, 835, 849, 850, 851, 856, 858, 859, 860, 861, 864, 865, 872, 873, 874, 880, 881, 884, 885, 888, 890, 892, 893, 898, 899, 903, 911, 913, 914, 915, 918, 919, 921, 924, 925, 926, 929, 932, 933, 934, 935, 939, 940, 941, 942, 956, 957, 958, 967, 968, 970, 972, 973, 974, 977, 982, 983, 992, 1000
9556943
9880975
10024879
10528615, 923
11176735
11392999
12148799
13120255, 383, 510, 575, 766, 863, 907
14308495, 743, 990
15064991
15856927
18952831
21688667, 751, 889
39364447, 511, 671, 681, 767, 795, 807, 894, 895
41524639, 959
190996871
250504703, 937

Quel nombre va au delà de N ?

Le tableau ci-dessus montre des altitudes jusque 250504 pour les nombres jusque 1000. Mais il existe une infinité de nombre qui vont plus haut.

Pour tout nombre N donné (N très grand), alors le nombre impair le plus proche de N aura une altitude encore plus grande.

Quand la conjecture a-t-elle été énoncée ?

Formulée en 1937 par Lothar Collatz (mathématicien allemand), elle reste à ce jour irrésolue : personne n'a encore pu prouver que cette conjecture se termine toujours par 1.

Code source

dCode se réserve la propriété du code source pour "Conjecture de Syracuse". Sauf code licence open source explicite (indiqué Creative Commons / gratuit), l'algorithme pour "Conjecture de Syracuse", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liées à "Conjecture de Syracuse" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou les accès API à "Conjecture de Syracuse" ne sont pas publics, idem pour un usage hors ligne, PC, mobile, tablette, appli iPhone ou Android !
Rappel : dCode est gratuit.

Citation

Le copier-coller de la page "Conjecture de Syracuse" ou de ses résultats est autorisée (même pour un usage commercial) tant que vous créditez dCode !
L'exportation des résultats sous forme de fichier .csv ou .txt est gratuite en cliquant sur l'icone export
Citer comme source bibliographique :
Conjecture de Syracuse sur dCode.fr [site web en ligne], consulté le 21/01/2025, https://www.dcode.fr/conjecture-syracuse

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Conjecture de Syracuse' gratuit ! Merci !


https://www.dcode.fr/conjecture-syracuse
© 2025 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
 
Un problème ?