Outil pour calculer des produits matriciels en calcul formel. Le produit matriciel consiste en la multiplication de matrices (carrées ou rectangulaires).
Produit Matriciel - dCode
Catégorie(s) : Matrice
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Le produit matriciel est le nom donné à la méthode de multiplication de matrices la plus courante.
$ M_1=[a_{ij}] $ est une matrice de $ m $ lignes et $ n $ colonnes et $ M_2=[b_{ij}] $ est une matrice de $ n $ lignes et $ p $ colonnes (tous les formats sont possibles 2x2, 2x3, 3x2, 3x3, 3x4, 4x3, etc.). Le produit matriciel $ M_1.M_2 = [c_{ij}] $ est une matrice de $ m $ lignes et $ p $ colonnes, avec : $$ \forall i, j: c_{ij} = \sum_{k=1}^n a_{ik}b_{kj} $$
La multiplication de 2 matrices $ M_1 $ et $ M_2 $ se note avec un point $ \cdot $ ou . soit $ M_1 \cdot M_2 $ (le même point que pour le produit scalaire)
Le produit matriciel n'est défini que si le nombre de colonnes de $ M_1 $ est égal au nombre de lignes de $ M_2 $ (les matrices sont dites compatibles)
La multiplication de 2 matrices $ M_1 $ et $ M_2 $ forme une matrice résultat $ M_3 $. Le produit matriciel consiste à réaliser des additions et des multiplications en fonction des positions des éléments dans les matrices $ M_1 $ et $ M_2 $.
$$ M_1 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ M_2 = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} \\ M_1 \cdot M_2 = \begin{bmatrix} a_{11}b_{11} +\cdots + a_{1n}b_{n1} & a_{11}b_{12} +\cdots + a_{1n}b_{n2} & \cdots & a_{11}b_{1p} +\cdots + a_{1n}b_{np} \\ a_{21}b_{11} +\cdots + a_{2n}b_{n1} & a_{21}b_{12} +\cdots + a_{2n}b_{n2} & \cdots & a_{21}b_{1p} +\cdots + a_{2n}b_{np} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{11} +\cdots + a_{mn}b_{n1} & a_{m1}b_{12} +\cdots + a_{mn}b_{n2} & \cdots & a_{m1}b_{1p} +\cdots + a_{mn}b_{np} \end{bmatrix} $$
Pour calculer la valeur de l'élément de la matrice $ M_3 $ en position $ i $ et colonne $ j $, extraire la ligne $ i $ de la matrice $ M_1 $ et la ligne $ j $ de la matrice $ M_2 $ et en calculer leur produit scalaire. C'est-à-dire, multiplier le premier élément de la ligne $ i $ de $ M_1 $ par le premier élément de la colonne $ j $ de $ M_2 $, puis le second élément de la ligne $ i $ de $ M_1 $ par le second élément de la colonne $ j $ de $ M_2 $, et ainsi de suite, noter la somme des multiplications obtenue, c'est la valeur du produit scalaire, donc de l'élément en position $ i $ et colonne $ j $ dans $ M_3 $.
Exemple : $$ \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \times 2 + 0 \times 4 & 1 \times -1 + 0 \times -3 \\ -2 \times 2 + 4 \times 3 & -2 \times -1 + 3 \times -3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 8 & -7 \end{bmatrix} $$
Le produit matriciel entre une matrice $ M $ de dimensions $ m \times n $ et un vecteur colonne $ V $ de dimension $ n \times 1 $ a pour résultat un nouveau vecteur colonne de dimension $ m \times 1 $.
Le principe est similaire pour un vecteur ligne.
Le produit d'une matrice $ M=[a_{ij}] $ par un scalaire (nombre) $ \lambda $ est une matrice de même taille que la matrice initiale $ M $, avec chaque élément de la matrice multiplié par $ \lambda $.
$$ \lambda M = [ \lambda a_{ij} ] $$
Associativité : $$ A \times (B \times C) = (A \times B) \times C $$
Distributivité (par rapport à l'opération d'addition) : $$ A \times (B + C) = A \times B + A \times C $$
$$ (A + B) \times C = A \times C + B \times C $$
$$ \lambda (A \times B) = (\lambda A) \times B = A \times (\lambda B) $$
L'ordre des opérandes a une importance dans la multiplication matricielle, ainsi $$ M_1.M_2 \neq M_2.M_1 $$ (non commutativité, sauf cas particulier)
Il existe un produit matriciel compatible avec n'importe quelles tailles de matrice (3x3,4x4,5x5,etc.) : le produit de Kronecker.
dCode se réserve la propriété du code source pour "Produit Matriciel". Sauf code licence open source explicite (indiqué Creative Commons / gratuit), l'algorithme pour "Produit Matriciel", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liées à "Produit Matriciel" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou les accès API à "Produit Matriciel" ne sont pas publics, idem pour un usage hors ligne, PC, mobile, tablette, appli iPhone ou Android !
Rappel : dCode est gratuit.
Le copier-coller de la page "Produit Matriciel" ou de ses résultats est autorisée (même pour un usage commercial) tant que vous créditez dCode !
L'exportation des résultats sous forme de fichier .csv ou .txt est gratuite en cliquant sur l'icone export
Citer comme source bibliographique :
Produit Matriciel sur dCode.fr [site web en ligne], consulté le 21/12/2024,