Rechercher un outil
Produit Matriciel

Outil pour calculer des produits matriciels en calcul formel. Le produit matriciel consiste en la multiplication de matrices (carrées ou rectangulaires).

Résultats

Produit Matriciel -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Produit Matriciel' gratuit ! Merci !

Produit Matriciel

Produit Matriciel de 2 Matrices


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)
Voir aussi : Calcul Matriciel

Produit d'une Matrice et d'un Vecteur


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Produit de Matrice Ligne par Matrice Colonne


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Produit d'une Matrice par un Scalaire (Nombre)


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Réponses aux Questions (FAQ)

Qu'est ce qu'un produit matriciel ? (Définition)

Le produit matriciel est le nom donné à la méthode de multiplication de matrices la plus courante.

$ M_1=[a_{ij}] $ est une matrice de $ m $ lignes et $ n $ colonnes et $ M_2=[b_{ij}] $ est une matrice de $ n $ lignes et $ p $ colonnes (tous les formats sont possibles 2x2, 2x3, 3x2, 3x3, 3x4, 4x3, etc.). Le produit matriciel $ M_1.M_2 = [c_{ij}] $ est une matrice de $ m $ lignes et $ p $ colonnes, avec : $$ \forall i, j: c_{ij} = \sum_{k=1}^n a_{ik}b_{kj} $$

La multiplication de 2 matrices $ M_1 $ et $ M_2 $ se note avec un point $ \cdot $ ou . soit $ M_1 \cdot M_2 $ (le même point que pour le produit scalaire)

Le produit matriciel n'est défini que si le nombre de colonnes de $ M_1 $ est égal au nombre de lignes de $ M_2 $ (les matrices sont dites compatibles)

Comment multiplier 2 matrices ? (Produit matriciel)

La multiplication de 2 matrices $ M_1 $ et $ M_2 $ forme une matrice résultat $ M_3 $. Le produit matriciel consiste à réaliser des additions et des multiplications en fonction des positions des éléments dans les matrices $ M_1 $ et $ M_2 $.

$$ M_1 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ M_2 = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} \\ M_1 \cdot M_2 = \begin{bmatrix} a_{11}b_{11} +\cdots + a_{1n}b_{n1} & a_{11}b_{12} +\cdots + a_{1n}b_{n2} & \cdots & a_{11}b_{1p} +\cdots + a_{1n}b_{np} \\ a_{21}b_{11} +\cdots + a_{2n}b_{n1} & a_{21}b_{12} +\cdots + a_{2n}b_{n2} & \cdots & a_{21}b_{1p} +\cdots + a_{2n}b_{np} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{11} +\cdots + a_{mn}b_{n1} & a_{m1}b_{12} +\cdots + a_{mn}b_{n2} & \cdots & a_{m1}b_{1p} +\cdots + a_{mn}b_{np} \end{bmatrix} $$

Pour calculer la valeur de l'élément de la matrice $ M_3 $ en position $ i $ et colonne $ j $, extraire la ligne $ i $ de la matrice $ M_1 $ et la ligne $ j $ de la matrice $ M_2 $ et en calculer leur produit scalaire. C'est-à-dire, multiplier le premier élément de la ligne $ i $ de $ M_1 $ par le premier élément de la colonne $ j $ de $ M_2 $, puis le second élément de la ligne $ i $ de $ M_1 $ par le second élément de la colonne $ j $ de $ M_2 $, et ainsi de suite, noter la somme des multiplications obtenue, c'est la valeur du produit scalaire, donc de l'élément en position $ i $ et colonne $ j $ dans $ M_3 $.

Exemple : $$ \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 \times 2 + 0 \times 4 & 1 \times -1 + 0 \times -3 \\ -2 \times 2 + 4 \times 3 & -2 \times -1 + 3 \times -3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 8 & -7 \end{bmatrix} $$

Comment multiplier une matrice par un vecteur ?

Le produit matriciel entre une matrice $ M $ de dimensions $ m \times n $ et un vecteur colonne $ V $ de dimension $ n \times 1 $ a pour résultat un nouveau vecteur colonne de dimension $ m \times 1 $.

Le principe est similaire pour un vecteur ligne.

Comment multiplier une matrice par un scalaire ?

Le produit d'une matrice $ M=[a_{ij}] $ par un scalaire (nombre) $ \lambda $ est une matrice de même taille que la matrice initiale $ M $, avec chaque élément de la matrice multiplié par $ \lambda $.

$$ \lambda M = [ \lambda a_{ij} ] $$

Quelles sont les propriétés de la multiplication de matrices ?

Associativité : $$ A \times (B \times C) = (A \times B) \times C $$

Distributivité (par rapport à l'opération d'addition) : $$ A \times (B + C) = A \times B + A \times C $$

$$ (A + B) \times C = A \times C + B \times C $$

$$ \lambda (A \times B) = (\lambda A) \times B = A \times (\lambda B) $$

L'ordre des opérandes a une importance dans la multiplication matricielle, ainsi $$ M_1.M_2 \neq M_2.M_1 $$ (non commutativité, sauf cas particulier)

Comment multiplier deux matrices de tailles incompatibles ?

Il existe un produit matriciel compatible avec n'importe quelles tailles de matrice (3x3,4x4,5x5,etc.) : le produit de Kronecker.

Code source

dCode se réserve la propriété du code source pour "Produit Matriciel". Sauf code licence open source explicite (indiqué Creative Commons / gratuit), l'algorithme pour "Produit Matriciel", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liées à "Produit Matriciel" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou les accès API à "Produit Matriciel" ne sont pas publics, idem pour un usage hors ligne, PC, mobile, tablette, appli iPhone ou Android !
Rappel : dCode est gratuit.

Citation

Le copier-coller de la page "Produit Matriciel" ou de ses résultats est autorisée (même pour un usage commercial) tant que vous créditez dCode !
L'exportation des résultats sous forme de fichier .csv ou .txt est gratuite en cliquant sur l'icone export
Citer comme source bibliographique :
Produit Matriciel sur dCode.fr [site web en ligne], consulté le 21/11/2024, https://www.dcode.fr/produit-matriciel

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Produit Matriciel' gratuit ! Merci !


https://www.dcode.fr/produit-matriciel
© 2024 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
 
Un problème ?