Outil pour calculer la trace d'une Matrice. La trace d'une matrice M est la somme des valeurs de sa diagonale principale, et se note Tr(M).
Trace d'une Matrice - dCode
Catégorie(s) : Matrice
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
La trace d'une matrice est l'addition des valeurs sur sa diagonale principale (en partant du coin en haut à gauche et en se décalant d'une case vers la droite et vers le bas). Donc la trace d'une matrice carrée utilise ces valeurs :
$$ \begin{bmatrix} X & . & . \\ . & X & . \\ . & . & X \end{bmatrix} $$ ou bien, pour une matrice rectangulaire : $$ \begin{bmatrix} X & . & . \\ . & X & . \end{bmatrix} $$ ou $$ \begin{bmatrix} X & . \\ . & X \\ . & . \end{bmatrix} $$
Pour calculer la trace d'une matrice carrée $ M $ d'ordre $ n $, effectuer la somme de la diagonale (en partant du coin en haut à gauche) :
$$ \mathrm{Tr}(M) = \sum_{i=1}^{n} a_{i \, i} $$
— Avec une matrice 2x2 : $$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \mathrm{Tr}(M) = a+d $$
Exemple : $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ \mathrm{Tr}(M) = 1+4 = 5 $$
— Avec une matrice 3x3 : $$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} \\ \mathrm{Tr}(M) = a+e+i $$
— Pour une matrice rectangulaire $ M $ de taille $ m \times n $, la diagonale correspond à celle de la matrice carrée incluse (en partant du coin en haut à gauche).
Exemple : $$ M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \Rightarrow \mathrm{Tr}(M) = \mathrm{Tr} \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} $$
Calcul à partir des valeurs propres d'une matrice : la trace d'une matrice $ M $ est égale à la somme de ses valeurs propres (y compris valeurs complexes et multiplicité).
NB : Le produit des valeurs propres est le déterminant de la matrice.
La trace respecte les propriétés suivantes :
— La trace d'une matrice identité $ I_n $ (d'ordre $ n $) vaut $ n $.
$$ \mathrm{Tr}(I_n) = n $$
— Soient A et B, deux matrices de même ordre (et donc A+B est calculable par addition matricielle) :
$$ \mathrm{Tr}(A + B) = \mathrm{Tr}(A) + \mathrm{Tr}(B) $$
— La trace est invariante pour une permutation cyclique : soient A et B, deux matrices de taille compatibles (et donc A.B est une matrice carré par multiplication matricielle) :
$$ \mathrm{Tr}(AB) = \mathrm{Tr}(BA) \\ \mathrm{Tr}(ABC) = \mathrm{Tr}(CAB) = \mathrm{Tr}(BCA) $$
mais en général $ \mathrm{Tr}(ABC) \neq \mathrm{Tr}(ACB) \neq \mathrm{Tr}(BAC) $
— Pour c un scalaire donné :
$$ \mathrm{Tr}(c A) = c \mathrm{Tr}(A) $$
— Pour $ A^T $ la matrice transposée de A :
$$ \mathrm{Tr}(A^T) = \mathrm{Tr}(A) $$
dCode se réserve la propriété du code source pour "Trace d'une Matrice". Tout algorithme pour "Trace d'une Matrice", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Trace d'une Matrice" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Trace d'une Matrice" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Trace d'une Matrice" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Trace d'une Matrice sur dCode.fr [site web en ligne], consulté le 16/04/2025,