Outil pour compter et générer des arrangements, c'est-à-dire des combinaisons ou l'ordre est important (A,B distinct de B,A).
Arrangements - dCode
Catégorie(s) : Combinatoire
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
En mathématiques, un arrangement (ou permutation partielle) est une liste ordonnée d'éléments sans répétition. Il s'agit des permutations de chaque combinaison.
Les arrangements de k parmi n sont les permutations de chaque combinaisons de k parmi n.
Exemple : 2 éléments parmi 3 (A,B,C) peuvent être mélangés de 6 façons différentes : A,B A,C B,A B,C C,A C,B
Dans un arrangement la notion d'ordre est importante A,B est différent de B,A, contrairement aux combinaisons.
Le dénombrement des arrangements fait appel à la combinatoire et aux factorielles.
Exemple : Pour k éléments parmi n, le nombre d'arrangements est $$ n!/(n-k)! $$
En dénombrement/combinatoire, les arrangements sont utilisés pour dénombrer les cas ou sont sélectionnés $ k $ éléments parmi $ n $ l'ordre ayant de l'importance.
Exemple : Nombre de podium de 3 chevaux parmi 20 participants à une course hippique : 20*19*18 = 6840 tiercés dans l'ordre possibles
Exemple : Nombre d'itinéraire passant par 5 villes Françaises (35000 communes) : 52506870250563750840000 itinéraires distincts
Exemple : Nombre de phrases de 10 mots du dictionnaire (100000 mots) : 99955008699055063270306822366827310265723712000000 phrases possibles
La liste est infinie, voici quelques exemples :
A(2,3) | 6 arr. | (1,2)(2,1)(1,3)(3,1)(2,3)(3,2) |
A(2,4) | 12 arr. | (1,2)(2,1)(1,3)(3,1)(1,4)(4,1)(2,3)(3,2)(2,4)(4,2)(3,4)(4,3) |
A(2,5) | 20 arr. | (1,2)(2,1)(1,3)(3,1)(1,4)(4,1)(1,5)(5,1)(2,3)(3,2)(2,4)(4,2)(2,5)(5,2)(3,4)(4,3)(3,5)(5,3)(4,5)(5,4) |
A(2,6) | 30 arr. | (1,2)(2,1)(1,3)(3,1)(1,4)(4,1)(1,5)(5,1)(1,6)(6,1)(2,3)(3,2)(2,4)(4,2)(2,5)(5,2)(2,6)(6,2)(3,4)(4,3)(3,5)(5,3)(3,6)(6,3)(4,5)(5,4)(4,6)(6,4)(5,6)(6,5) |
A(3,4) | 24 arr. | (1,2,3)(2,1,3)(3,1,2)(1,3,2)(2,3,1)(3,2,1)(1,2,4)(2,1,4)(4,1,2)(1,4,2)(2,4,1)(4,2,1)(1,3,4)(3,1,4)(4,1,3)(1,4,3)(3,4,1)(4,3,1)(2,3,4)(3,2,4)(4,2,3)(2,4,3)(3,4,2)(4,3,2) |
Le calcul des arrangements est exponentiel ce qui nécessite de grosses ressources en serveurs de calcul, ces générations sont donc payantes.
dCode se réserve la propriété du code source pour "Arrangements". Tout algorithme pour "Arrangements", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Arrangements" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Arrangements" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Arrangements" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Arrangements sur dCode.fr [site web en ligne], consulté le 16/04/2025,