Outil pour calculer les valeurs du coefficient binomial (opérateur de combinaisons) utilisé pour le développement du binôme mais aussi pour les dénombrements ou les probabilités.
Coefficient Binomial - dCode
Catégorie(s) : Combinatoire
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Le coefficient binomial est un nombre qui représente le nombre de façons de choisir $ k $ éléments parmi $ n $ éléments distincts, sans tenir compte de l'ordre. En d'autres termes, il mesure le nombre de combinaisons possibles (dénombrement).
Le coefficient binomial s'écrit $ {n \choose k} $ ou $ C_{n}^{k} $ se lit $ k $ parmi $ n $. Généralement $ n $ est le nombre total d'éléments et $ k $ est le nombre d'éléments choisis.
Le coefficient binomial est défini par la formule $$ {n \choose k} = \frac{n!}{k!(n-k)!} $$ avec $ n! $ la factorielle de n.
En pratique, les factorielles ont des valeurs qui se simplifient.
Exemple : $ {10 \choose 6} = \frac{10!}{6!4!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1} = \frac{10 \times 9 \times 8 \times 7 }{4 \times 3 \times 2 \times 1} = \frac{5040}{24} = 210 $
Les valeurs du coefficient binomial apparaissent dans le développement du binome de Newton : $$ (a+b)^{n}=\sum_{k=0}^{n}{n \choose k}a^{{n-k}}b^{k} $$
Exemple : $$ (x+y)^{4} = x^4 + {4 \choose 1} x^3 y + {4 \choose 2} x^2 y^2 + {4 \choose 3} x y^3 + y^4 = x^4 + 4 x^3 y + 6 x^2 y^2 + 4 x y^3 + y^4 $$
La valeur du coefficient binomial $$ \binom{A}{B} $$ se trouve dans le triangle de Pascal à la ligne A, colonne colonne B (en ligne et colonne indexée en 0).
Les formules suivantes sont utilisées pour les coefficients binomiaux:
$$ {n \choose k} = {n \choose n-k} $$
$$ {n \choose k} + {n \choose k+1} = {n+1 \choose k+1} $$
$$ {n \choose k} = {\frac{n}{k}}{n-1 \choose k-1} $$
$$ {n \choose 0} = 1 $$
$$ {n \choose n} = 1 $$
Le coefficient binomial est utilisé principalement dans les calculs de dénombrements et de probabilités. C'est la base de calcul du nombre de combinaisons de k éléments parmi n.
Exemple : Le nombre de combinaisons au loto est de 5 parmi 49 soit $ {49 \choose 5} = 1906884 $ combinaisons possibles.
dCode se réserve la propriété du code source pour "Coefficient Binomial". Tout algorithme pour "Coefficient Binomial", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Coefficient Binomial" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Coefficient Binomial" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Coefficient Binomial" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Coefficient Binomial sur dCode.fr [site web en ligne], consulté le 16/04/2025,