Outil pour appliquer/vérifier le théorème de Zeckendorf stipulant que tout nombre entier peut être écrit sous la forme de somme de nombres de Fibonacci non consécutifs aussi appelé représentation de Zeckendorf.
Représentation de Zeckendorf - dCode
Catégorie(s) : Arithmétique
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Tout entier naturel $ n \in \mathbb{N} $ possède une représentation unique sous la forme d'une somme de nombres de Fibonacci non consécutifs. Sa formule s'écrit : $$ n = \sum_{i=0}^{k} \alpha_i F_{i} $$ avec $ F_i $ le ième nombre de Fibonacci, $ \alpha_i $ un nombre binaire valant $ 0 $ ou $ 1 $ (manière d'indiquer que soit le nombre de Fibonacci est dans la somme, soit il ne l'est pas) et $ \alpha_i \times \alpha_{i+1} = 0 $ (manière de rendre impossible 2 nombres de Fibonacci consécutif).
Cette propriété est utilisée dans le codage de Fibonacci (une représentation binaire de tout nombre entier, basée sur les valeurs de $ \alpha_i $)
Indiquer une valeur d'un nombre $ N $ et dCode fera le calcul automatiquement.
Exemple : 10000 est la somme de $ 6765 + 2584 + 610 + 34 + 5 + 2 $, respectivement les 20ème, 18ème, 15ème, 9ème, 5ème et 3ème nombres de Fibonacci
Algorithmiquement, dCode utilise la formule de Binet pour obtenir les nombres de Fibonacci proches d'un nombre donné et les soustrait recursivement jusqu'à trouver la représentation de Zeckendorf.
dCode se réserve la propriété du code source pour "Représentation de Zeckendorf". Tout algorithme pour "Représentation de Zeckendorf", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Représentation de Zeckendorf" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Représentation de Zeckendorf" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Représentation de Zeckendorf" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Représentation de Zeckendorf sur dCode.fr [site web en ligne], consulté le 17/04/2025,