Rechercher un outil
Soustraction Matricielle

Outil pour calculer des soustractions matricielles en calcul formel. La soustraction de matrices est similaire à l'addition, elle est obtenue en soustrayant les éléments de chaque matrice.

Résultats

Soustraction Matricielle -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Soustraction Matricielle' gratuit ! Merci !

Soustraction Matricielle

Soustraction de 2 Matrices


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Réponses aux Questions (FAQ)

Qu'est ce qu'une soustraction de matrices ? (Définition)

Soient 2 matrices de taille identique : $ M_1=[a_{ij}] $ une matrice de $ m $ lignes et $ n $ colonnes (avec $ m = n $ dans le cas d'une matrice carrée) et $ M_2=[b_{ij}] $ une matrice également de $ m $ lignes et $ n $ colonnes.

La soustraction de ces 2 matrices $ M_1 - M_2 = [c_{ij}] $ est une matrice de $ m $ lignes et $ n $ colonnes (taille inchangée), avec : $$ \forall i, j : c_{ij} = a_{ij}-b_{ij} $$

Comment soustraire 2 matrices ?

La soustraction de matrice n'est définie qu'avec 2 matrices de tailles identiques (carré 2x2, 3x3, etc. ou rectangulaire 2x3, 3x2, etc.). Le calcul consiste à soustraire les éléments dans la même position dans chaque matrice.

Exemple : $$ \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 7-1 & 8-2 \\ 9-3 & 10-4 \\ 11-5 & 12-6 \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & 6 \\ 6 & 6 \end{bmatrix} $$

Comment soustraire 2 matrices de tailles différentes ?

L'opération de soustraction matricielle n'est définie qu'avec des matrices de format identiques (comme l'opération d'addition de matrices). Une autre opération appelée somme directe, permet d'utiliser des matrices de tailles différentes et peut être généralisée à la soustraction.

Code source

dCode se réserve la propriété du code source pour "Soustraction Matricielle". Tout algorithme pour "Soustraction Matricielle", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Soustraction Matricielle" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Soustraction Matricielle" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Soustraction Matricielle" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/soustraction-matricielle
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Soustraction Matricielle sur dCode.fr [site web en ligne], consulté le 16/04/2025, https://www.dcode.fr/soustraction-matricielle

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Soustraction Matricielle' gratuit ! Merci !


https://www.dcode.fr/soustraction-matricielle
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?