Outil pour calculer des soustractions matricielles en calcul formel. La soustraction de matrices est similaire à l'addition, elle est obtenue en soustrayant les éléments de chaque matrice.
Soustraction Matricielle - dCode
Catégorie(s) : Matrice
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Soient 2 matrices de taille identique : $ M_1=[a_{ij}] $ une matrice de $ m $ lignes et $ n $ colonnes (avec $ m = n $ dans le cas d'une matrice carrée) et $ M_2=[b_{ij}] $ une matrice également de $ m $ lignes et $ n $ colonnes.
La soustraction de ces 2 matrices $ M_1 - M_2 = [c_{ij}] $ est une matrice de $ m $ lignes et $ n $ colonnes (taille inchangée), avec : $$ \forall i, j : c_{ij} = a_{ij}-b_{ij} $$
La soustraction de matrice n'est définie qu'avec 2 matrices de tailles identiques (carré 2x2, 3x3, etc. ou rectangulaire 2x3, 3x2, etc.). Le calcul consiste à soustraire les éléments dans la même position dans chaque matrice.
Exemple : $$ \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 7-1 & 8-2 \\ 9-3 & 10-4 \\ 11-5 & 12-6 \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & 6 \\ 6 & 6 \end{bmatrix} $$
L'opération de soustraction matricielle n'est définie qu'avec des matrices de format identiques (comme l'opération d'addition de matrices). Une autre opération appelée somme directe, permet d'utiliser des matrices de tailles différentes et peut être généralisée à la soustraction.
dCode se réserve la propriété du code source pour "Soustraction Matricielle". Tout algorithme pour "Soustraction Matricielle", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Soustraction Matricielle" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Soustraction Matricielle" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Soustraction Matricielle" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Soustraction Matricielle sur dCode.fr [site web en ligne], consulté le 16/04/2025,