Outil pour appliquer la méthode du pivot de Gauss et calculer la matrice échelonnée réduite correspondante, avec les étapes, les détails, la matrice inverse et le vecteur solution.
Elimination de Gauss (Pivot) - dCode
Catégorie(s) : Matrice, Calcul Formel
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
L'algorithme d'élimination gaussienne (appellée méthode du pivot de Gauss ou Gauss-Jordan) permet de trouver les solutions d'un système d'équations linéaires, et de déterminer l'inverse d'une matrice.
L'algorithme travaille sur les lignes de la matrice, en échangeant ou multipliant les lignes entre elles (à un facteur près).
A chaque étape, l'algorithme a pour but d'introduire dans la matrice, sur les éléments en dehors de la diagonale, des valeurs nulles.
A partir d'un système d'équations linéaires, la première étape est de convertir les équations en une matrice.
Exemple : $$ \left\{ \begin{array}{} x&-&y&+&2z&=&5\\3x&+&2y&+&z&=&10\\2x&-&3y&-&2z&=&-10\\\end{array} \right. $$ peut s'écrire sous forme de multiplication matricielle : $$ \left( \begin{array}{ccc} 1 & -1 & 2 \\ 3 & 2 & 1 \\ 2 & -3 & -2 \end{array} \right) . \left( \begin{array}{c} x \\ y \\ z \end{array} \right) = \left( \begin{array}{c} 5 \\ 10 \\ -10 \end{array} \right) $$ ce qui correspond à la matrice (appelée augmentée) $$ \left( \begin{array}{ccc|c} 1 & -1 & 2 & 5 \\ 3 & 2 & 1 & 10 \\ 2 & -3 & -2 & -10 \end{array} \right) $$
Puis, pour chaque élément en dehors de la diagonale non nul, réaliser un calcul adéquat en additionnant ou soustrayant les autres lignes afin que l'élément devienne 0.
Exemple : Soustraire 3 fois (Ligne 1) à (Ligne 2) pour que l'élément ligne 2, colonne 1 soit nul : $$ \left( \begin{array}{ccc|c} 1 & -1 & 2 & 5 \\ 0 & 5 & -5 & -5 \\ 2 & -3 & -2 & -10 \end{array} \right) $$
Soustraire 2 fois (Ligne 1) à (Ligne 3) pour que l'élément ligne 3, colonne 1 soit nul : $$ \left( \begin{array}{ccc|c} 1 & -1 & 2 & 5 \\ 0 & 5 & -5 & -5 \\ 0 & -1 & -6 & -20 \end{array} \right) $$
Soustraire 1/5 fois (Ligne 2) à (Ligne 3) pour que l'élément ligne 3, colonne 2 soit nul : $$ \left( \begin{array}{ccc|c} 1 & -1 & 2 & 5 \\ 0 & 5 & -5 & -5 \\ 0 & 0 & -7 & -21 \end{array} \right) $$
Soustraire 1/5 fois (Ligne 2) à (Ligne 1) pour que l'élément ligne 1, colonne 2 soit nul : $$ \left( \begin{array}{ccc|c} 1 & 0 & 1 & 4 \\ 0 & 5 & -5 & -5 \\ 0 & 0 & -7 & -21 \end{array} \right) $$
Soustraire 1/7 fois (Ligne 3) à (Ligne 1) pour que l'élément ligne 1, colonne 3 soit nul : $$ \left( \begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 5 & -5 & -5 \\ 0 & 0 & -7 & -21 \end{array} \right) $$
Soustraire 5/7 fois (Ligne 3) à (Ligne 2) pour que l'élément ligne 2, colonne 3 soit nul : $$ \left( \begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 5 & 0 & 10 \\ 0 & 0 & -7 & -21 \end{array} \right) $$
Simplifier les lignes en divisant par la valeur de la diagonale
Exemple : $$ \left( \begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array} \right) $$
Le vecteur résultat est la dernière colonne.
Exemple : $ {1,2,3} $ correspondant respectivement à $ {x,y,z} $ soit $ x=1, y=2, z=3 $
dCode se réserve la propriété du code source pour "Elimination de Gauss (Pivot)". Tout algorithme pour "Elimination de Gauss (Pivot)", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Elimination de Gauss (Pivot)" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Elimination de Gauss (Pivot)" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Elimination de Gauss (Pivot)" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Elimination de Gauss (Pivot) sur dCode.fr [site web en ligne], consulté le 17/04/2025,