Rechercher un outil
Trigonalisation de Matrice

Outil de calcul de la triangularisation/trigonalisation de matrice afin d'écrire une matrice carrée en une composition d'une matrice triangulaire supérieure et d'une matrice unitaire.

Résultats

Trigonalisation de Matrice -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Trigonalisation de Matrice' gratuit ! Merci !

Trigonalisation de Matrice

Calculateur de Trigonalisation de Matrice

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Réponses aux Questions (FAQ)

Qu'est ce que la Trigonalisation de Matrice ? (Définition)

La Trigonalisation (parfois nommée triangularisation) de Matrice d'une matrice carré $ M $ consiste à écrire la matrice sous la forme : $$ M = Q.T.Q^{-1} $$

avec $ T $ une matrice triangulaire supérieure et $ Q $ une matrice unitaire (i.e. $ Q^*.Q = I $ matrice identité).

Ce calcul, aussi appelé décomposition de Schur, utilise les valeurs propres de la matrice comme valeurs de la diagonale.

Le théorème de Schur indique qu'il existe toujours au moins une décomposition sur $ \mathbb{C} $ (donc la matrice est trigonalisable/triangularisable).

Cette trigonalisation ne s'applique qu'aux matrices carrées numériques ou complexes (sans variables).

Comment calculer la matrice triangulaire ?

dCode utilise la décomposition de Schur via des algorithmes informatiques comme la décomposition QR.

Manuellement, pour une matrice matrice $ M $, calculer ses valeurs propres $ \Lambda_i $ et en déduire un vecteur propre $ u_1 $

Calculer sa valeur normalisée dans une base orthonormée $ {u_1, v_2} $ afin d'obtenir $ U = [ u_1, v_2 ] $

Exprimer ensuite la matrice dans la base orthonormée $ A_{{u_1,v_2}} = U^{-1}.A.U = U^{T}.A.U $

Enfin, répéter cette opération pour chacun des vecteurs propres afin d'obtenir la matrice triangulaire.

Pour une matrice 2x2, une seule opération est nécessaire et $ T = A_{{u_1,v_2}} $

Exemple : Triangularisation de Schur pour la matrice $ M = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} $ donne $$ Q = \begin{bmatrix} 0.909 & 0.415 \\ -0.415 & 0.909 \end{bmatrix}, T = \begin{bmatrix} 5.37 & −1 \\ 0 & −0.37 \end{bmatrix} $$

Comment démontrer qu'une matrice est trigonalisable ?

Calculer polynôme caractéristique $ P $ de la matrice. Elle sera trigonalisable si et seulement si $ P $ est scindé. C'est-à-dire qu'il est représentable sous la forme d'un produit de polynômes du premier degré.

Code source

dCode se réserve la propriété du code source pour "Trigonalisation de Matrice". Sauf code licence open source explicite (indiqué Creative Commons / gratuit), l'algorithme pour "Trigonalisation de Matrice", l'applet ou snippet (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou les fonctions liées à "Trigonalisation de Matrice" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou les données, en téléchargement, script, ou les accès API à "Trigonalisation de Matrice" ne sont pas publics, idem pour un usage hors ligne, PC, mobile, tablette, appli iPhone ou Android !
Rappel : dCode est gratuit.

Citation

Le copier-coller de la page "Trigonalisation de Matrice" ou de ses résultats est autorisée (même pour un usage commercial) tant que vous créditez dCode !
L'exportation des résultats sous forme de fichier .csv ou .txt est gratuite en cliquant sur l'icone export
Citer comme source bibliographique :
Trigonalisation de Matrice sur dCode.fr [site web en ligne], consulté le 18/11/2024, https://www.dcode.fr/trigonalisation-matrice

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Trigonalisation de Matrice' gratuit ! Merci !


https://www.dcode.fr/trigonalisation-matrice
© 2024 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches / CTF.
 
Un problème ?