Rechercher un outil
Division Matricielle

Outil pour calculer des divisions matricielles en calcul formel (2x2, 3x3, 4x4, 5x5, …). La division matricielle consiste en la multiplication par une matrice inversée.

Résultats

Division Matricielle -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Division Matricielle' gratuit ! Merci !

Division Matricielle

Division Matricielle

Division de 2 Matrices


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Division d'une Matrice par un Scalaire (Nombre)


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Voir aussi : Calcul Matriciel

Réponses aux Questions (FAQ)

Qu'est-ce qu'une division de matrices ? (Définition)

En prenant $ M_1 $ une matrice de $ m $ lignes et $ n $ colonnes et $ M_2 $ une matrice carrée de $ n \times n $. L'opération de division matricielle de deux matrices $ M_1/M_2 $ consiste à multiplier la matrice $ M_1 $ par la matrice inverse de $ M_2 $ : $ M_2^{-1} $. $$ M_1/M_2 = M_1 \times M_2^{-1} $$

Comment effectuer une division de matrices ?

Pour calculer une division matricielle, procéder par étapes :

— Vérifier que le nombre de colonnes de la matrice $ M_1 $ est égal au nombre de lignes de la matrice $ M_2 $

— Vérifier que la matrice $ M_2 $ est une matrice carrée (même nombre de lignes et de colonnes : 2x2, 3x3, 4x4, NxN).

— Vérifier que la matrice $ M_2 $ est une matrice inversible.

— Calculer l'inverse de la matrice $ M_2 $ noté $ M_2^{-1} $

— Calculer la multiplication matricielle $ M_1 \times M_2^{-1} $$ le résultat obtenu est celui de la division matricielle.

Exemple : Division de matrices 2x2 $$ \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} / \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} . \left( \frac{1}{2} \begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} $$

Comment diviser une matrice par un scalaire ?

La division d'une matrice $ M=[a_{ij}] $ par un scalaire $ \lambda $ est une matrice de même taille que $ M $ (la matrice initiale), avec chaque élément de la matrice divisé par $ \lambda $.

$$ \frac{M}{\lambda} = [ a_{ij} / \lambda ] $$

Exemple : $$ \begin{bmatrix} 0 & 2 \\ 4 & 6 \end{bmatrix} / 2 = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} $$

Code source

dCode se réserve la propriété du code source pour "Division Matricielle". Tout algorithme pour "Division Matricielle", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Division Matricielle" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Division Matricielle" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Division Matricielle" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/division-matricielle
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Division Matricielle sur dCode.fr [site web en ligne], consulté le 16/04/2025, https://www.dcode.fr/division-matricielle

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Division Matricielle' gratuit ! Merci !


https://www.dcode.fr/division-matricielle
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?