Outil de calcul de la matrice de Jordan (par réduction de Jordan de matrice carrée) pour obtenir, par décomposition, 2 matrices S et J telles que M = S . J . S̄
Réduction de Jordan (Matrice) - dCode
Catégorie(s) : Matrice
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Une matrice carrée $ M $ de taille $ n \times n $ est diagonalisable si et seulement si la somme des dimensions de ses espaces propres est $ n $.
Si $ M $ n'est pas diagonalisable, il existe une matrice quasi-diagonale $ J $, dite matrice de Jordan, qui possède des éléments non nuls sur la diagonale principale et sur la première diagonale au-dessus. Plus précisément, la matrice de Jordan aura les valeurs propres $ \lambda_i $ sur la diagonale et avec des 1 juste au dessus (en cas de multiplicité), soit de la forme normale de Jordan $$ \begin{bmatrix} \lambda_i & 1 & \; & \; \\ \; & \lambda_i & \ddots & \; \\ \; & \; & \ddots & 1 \\ \; & \; & \; & \lambda_i \end{bmatrix} $$
Soit $ M $ une matrice carrée de taille $ n $, qui a pour valeurs propres l'ensemble des $ \lambda_i $.
Exemple : $$ M = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow \lambda_1 = \lambda_2 = 3, \lambda_3 = 4 $$ Ici, $ M $ a seulement 2 vecteurs propres : $ v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $ et $ v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} $, donc n'est pas diagonalisable, mais a pour matrice de Jordan (forme canonique) $$ J = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} $$
Exemple : Méthode alternative: calculer la matrice de passage $ S $ en calculant un troisième vecteur $ v_3 $ tel que $ (M - 3 I_3) v_3 = k_1 v_1 + k_2 v_2 \Rightarrow v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} $. Donc $$ S = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} $$ et $ M = S . J . S^{-1} $
La décomposition de Jordan c'est l'obtention, à partir d'une matrice $ M $, des matrices $ S $ et $ J $ telles que $ M = S . J . S^{-1} $
La réduction est l'opération qui permet de passer de la matrice $ M $ à la matrice de Jordan $ J $ (qui est dite réduite)
Si $ M = SJS^{-1} $ Alors $ M^k = SJ^kS^{-1} $ (voir les puissances de matrices).
dCode se réserve la propriété du code source pour "Réduction de Jordan (Matrice)". Tout algorithme pour "Réduction de Jordan (Matrice)", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Réduction de Jordan (Matrice)" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Réduction de Jordan (Matrice)" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Réduction de Jordan (Matrice)" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Réduction de Jordan (Matrice) sur dCode.fr [site web en ligne], consulté le 16/04/2025,