Rechercher un outil
Moyenne Harmonique

Outil pour calculer une moyenne harmonique à partir d'une série ou d'une liste de nombres entiers ou réels. La moyenne harmonique est par exemple utilisée pour les vitesses moyennes.

Résultats

Moyenne Harmonique -

Catégorie(s) : Statistiques

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Moyenne Harmonique' gratuit ! Merci !

Moyenne Harmonique

Calculatrice de Moyenne Harmonique


Chargement en cours...
(si ce message ne disparait pas, actualiser la page)
Voir aussi : Moyenne de Nombres

Réponses aux Questions (FAQ)

Qu'est ce qu'une moyenne harmonique ? (Définition)

Etant donné une liste $ X $ de $ n $ nombres $ \{a_1, a_2, \dots, a_n\} $. La moyenne harmonique est définie par la division de $ n $ par la somme des inverses des nombres :

$$ \bar{X}_{harm} = \frac{n}{\sum_{i=1}^n \frac{1}{a_i}} $$

Comment calculer une moyenne harmonique ?

Pour calculer une moyenne harmonique d'une liste de valeurs, dénombrer le nombre total $ n $ de valeurs dans la liste et calculer la somme $ S $ des inverses des valeurs.

Exemple : Une voiture a roulé sur une distance $ d $ à 30km/h la moitié de la distance puis à 90km/h. La vitesse moyenne de la voiture peut se définir avec sa vitesse harmonique par le calcul $ n/S $ avec $ n = 2 $ et $ S = 1/30 + 1/90 = 0.0444... $ soit $ \bar{M}_{harm} = 2/(1/30+1/90) = 45 $ km/h.
En effet, en prenant comme distance $ d = 15km $, la voiture aura parcouru $ d/2 $ à 30km/h en 15 minutes et $ d/2 $ à 90km/h en 5 minutes donc une distance de 15km en 20 minutes soit 45km/h en moyenne.

Quand utiliser une moyenne harmonique ?

La moyenne harmonique est utilisée lors que les éléments comparés ont des rapports de proportionnalité inverses.

Exemple : Le prix au mètre carré d'une maison est plus élevé si la surface totale est petite.

Exemple : Une durée de trajet est plus courte lorsque la vitesse est élevée.

Exemple : Sur un circuit électronique, le calcul de deux résistances en parallèle correspond à la moyenne harmonique des 2 valeurs de résistance

Qu'est ce que la série harmonique ? (Définition)

La série harmonique est la suite des inverses des entiers naturels non nuls notée $ H_n $

$$ H_n = 1 + \frac12 + \frac13 + \frac14 + \cdots + \frac1n = \sum_{k=1}^n \frac1k $$

Code source

dCode se réserve la propriété du code source pour "Moyenne Harmonique". Tout algorithme pour "Moyenne Harmonique", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Moyenne Harmonique" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Moyenne Harmonique" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Moyenne Harmonique" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/moyenne-harmonique
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Moyenne Harmonique sur dCode.fr [site web en ligne], consulté le 17/04/2025, https://www.dcode.fr/moyenne-harmonique

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Moyenne Harmonique' gratuit ! Merci !


https://www.dcode.fr/moyenne-harmonique
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?