Rechercher un outil
Forme Exponentielle Complexe

Outil pour convertir les nombres complexes en notation forme exponentielle re^i et inversement en calculant les valeurs du modules et de l'argument principal du nombre complexe.

Résultats

Forme Exponentielle Complexe -

Catégorie(s) : Arithmétique, Géométrie

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Forme Exponentielle Complexe' gratuit ! Merci !

Forme Exponentielle Complexe

Convertisseur de Nombre Complexe

A partir d'un Nombre Complexe a+ib


A partir des coordonnées cartésiennes (valeurs a et b dans a+ib)



A partir des coordonnées polaires (module et argument)



Réponses aux Questions (FAQ)

Qu'est ce que la forme exponentielle d'un nombre complexe ? (Définition)

La notation exponentielle d'un nombre complexe $ z $ d'argument $ \theta $ et de module $ r $ est : $$ z = r \operatorname{e}^{i \theta} $$

Exemple : Le nombre complexe $ z $ écrit sous forme cartésienne $ z = 1+i $ a pour module $ \sqrt(2) $ et argument $ \pi/4 $ donc sa forme exponentielle complexe est $ z = \sqrt(2) e^{i\pi/4} $

dCode propose des fonctions de calcul de module de nombre complexe et de calcul d'argument de nombre complexe.

Qu'est ce que la formule d'Euler ?

La formule d'Euler appliquée à un nombre complexe relie le cosinus et le sinus avec la notation exponentielle complexe : $$ e^{i\theta } = \cos {\theta} + i \sin {\theta} $$ avec $ \theta \in \mathbb{R} $

Comment convertir des coordonnées cartésiennes en coordonnées polaires ?

La conversion de coordonnées cartésiennes complexes en coordonnées polaires complexes pour les nombres complexe $ z = ai + b $ (avec $ (a, b) $ les coordonnées cartésiennes) est précisément d'écrire ce nombre sous forme exponentielle complexe afin d'en récupérer le module $ r $ et l'argument $ \theta $ (avec $ (r, \theta) $ les coordonnées polaires).

Quelles sont les propriétés de l'exponentiation complexe ?

Si le nombre complexe n'a pas de partie imaginaire : $ e^{i0} = e^{0} = 1 $ ou $ e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1 $

Si le nombre complexe n'a pas de partie réelle : $ e^{i(\pi/2)} = \cos{\pi/2} + i\sin{\pi/2} = i $ ou $ e^{i(-\pi/2)} = \cos{-\pi/2} + i\sin{-\pi/2} = -i $

Code source

dCode se réserve la propriété du code source pour "Forme Exponentielle Complexe". Tout algorithme pour "Forme Exponentielle Complexe", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Forme Exponentielle Complexe" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Forme Exponentielle Complexe" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Forme Exponentielle Complexe" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/forme-exponentielle-complexe
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Forme Exponentielle Complexe sur dCode.fr [site web en ligne], consulté le 17/04/2025, https://www.dcode.fr/forme-exponentielle-complexe

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Forme Exponentielle Complexe' gratuit ! Merci !


https://www.dcode.fr/forme-exponentielle-complexe
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?