Rechercher un outil
Matrice Complémentaire

Outil pour calculer la Matrice Complémentaire d'une matrice carrée. Matrice Complémentaire est le nom donné à la transposée de la comatrice, matrice des cofacteurs.

Résultats

Matrice Complémentaire -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Matrice Complémentaire' gratuit ! Merci !

Matrice Complémentaire

Calculatrice de Matrice Complémentaire (NxN)

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)

Réponses aux Questions (FAQ)

Qu'est ce qu'une Matrice Complémentaire ? (Définition)

Une matrice carrée $ M $ a pour matrice complémentaire $ \operatorname{Comp}(M) = ^{\operatorname{t}}\operatorname{Cof}(M) $ soit la transposée de la comatrice (matrice des cofacteurs) de $ M $.

Comment calculer la Matrice Complémentaire ?

La Matrice Complémentaire $ \operatorname{Comp} $ de la matrice carrée $ M $ se calcule $ ^{\operatorname t}\operatorname{Cof} $ : la transposée de la comatrice (matrice des cofacteurs) de $ M $.

Pour calculer la comatrice $ \operatorname{Cof}(M) $, calculer, pour chaque élément de la matrice $ M $ en position $ (i,j) $, le déterminant de la sous-matrice $ SM $ associée (aussi appelé mineur) et multiplier par un facteur $ -1 $ selon la position dans la matrice.

$$ \operatorname{Cof}_{i,j} = (-1)^{i+j}\operatorname{Det}(SM_i) $$

Pour obtenir la matrice complémentaire, prendre la matrice transposée de la comatrice calculée.

Formule pour une matrice 2x2 :

$$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$

$$ \operatorname{Cof}(M) = \begin{bmatrix} {{d}} & {{-c}} \\ {{-b}} & {{a}} \end{bmatrix} $$

$$ \operatorname{Comp}(M) = \begin{bmatrix} {{d}} & {{-b}} \\ {{-c}} & {{a}} \end{bmatrix} $$

Exemple : $$ M = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \Rightarrow \operatorname{Cof}(M) = \begin{bmatrix} {{1}} & {{-2}} \\ {{-3}} & {{4}} \end{bmatrix} \Rightarrow \operatorname{Comp}(M) = \begin{bmatrix} {{1}} & {{-3}} \\ {{-2}} & {{4}} \end{bmatrix} $$

Formule pour une matrice 3x3 :

$$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} $$

$$ \operatorname{Cof}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$

$$ \operatorname{Comp}(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} b & c \\ e & f \end{vmatrix} \\ & & \\ -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} \\ & & \\ +\begin{vmatrix} d & e \\ g & h \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$

Quelle est la différence entre la comatrice et la matrice complémentaire ?

La matrice complémentaire est la transposée de la comatrice.

Code source

dCode se réserve la propriété du code source pour "Matrice Complémentaire". Tout algorithme pour "Matrice Complémentaire", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Matrice Complémentaire" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Matrice Complémentaire" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Matrice Complémentaire" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/matrice-complementaire
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Matrice Complémentaire sur dCode.fr [site web en ligne], consulté le 16/04/2025, https://www.dcode.fr/matrice-complementaire

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Matrice Complémentaire' gratuit ! Merci !


https://www.dcode.fr/matrice-complementaire
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?