Rechercher un outil
Matrice des Cofacteurs

Outil pour calculer la matrice des cofacteurs (comatrice) : une matrice composée des déterminants des sous-matrices la composant (aussi appelée mineurs).

Résultats

Matrice des Cofacteurs -

Catégorie(s) : Matrice

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Matrice des Cofacteurs' gratuit ! Merci !

Matrice des Cofacteurs

Calculatrice de la Matrice des Cofacteurs

Chargement en cours...
(si ce message ne disparait pas, actualiser la page)


Réponses aux Questions (FAQ)

Qu'est-ce que la comatrice ? (Définition)

La comatrice d'une matrice carrée $ M = [a_{i,j}] $ est notée $ Cof(M) $. Il s'agit de la matrice des cofacteurs soit les mineurs pondérée par un facteur $ (-1)^{i+j} $.

Comment calculer la matrice des cofacteurs ?

Pour chaque élément de la matrice, calculer le déterminant de la sous-matrice $ SM $ associée (ce déterminant est noté $ \text{Det}(SM) $ ou $ | SM | $ et est aussi appelé mineur. Multiplier alors le mineur par un facteur $ -1 $ selon la position dans la matrice.

$$ Cof_{i,j} = (-1)^{i+j} \text{Det}(SM_i) $$

Calcul d'une comatrice 2x2 :

$$ M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$

$$ Cof(M) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} $$

Exemple : $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow Cof(M) = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix} $$

Calcul d'une comatrice 3x3 :

$$ M = \begin{bmatrix} a & b & c \\d & e & f \\ g & h & i \end{bmatrix} $$

$$ Cof(M) = \begin{bmatrix} + \begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} $$

La matrice transposée de la comatrice est appelée matrice complémentaire.

Quelles sont les propriétés de la Comatrice ?

La plupart des propriétés de la matrice des cofacteurs concernent en fait sa transposée, la transposée de la matrice des cofacteurs est appelée matrice complémentaire.

$$ A({}^t{{\rm com} A}) = ({}^t{{\rm com} A})A =\det{A} \times I_n $$

$$ A^{-1}=\frac1{\det A} \, {}^t{{\rm com} A} $$

Qu'est ce que le cofacteur d'une matrice ?

Un cofacteur se calcule à partir du mineur de la sous-matrice.

$$ Cof_{i,j} = (-1)^{i+j} \text{Det}(SM_i) $$

Code source

dCode se réserve la propriété du code source pour "Matrice des Cofacteurs". Tout algorithme pour "Matrice des Cofacteurs", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Matrice des Cofacteurs" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Matrice des Cofacteurs" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Matrice des Cofacteurs" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/matrice-cofacteurs
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Matrice des Cofacteurs sur dCode.fr [site web en ligne], consulté le 24/04/2025, https://www.dcode.fr/matrice-cofacteurs

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Matrice des Cofacteurs' gratuit ! Merci !


https://www.dcode.fr/matrice-cofacteurs
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?