Rechercher un outil
Degré d'un Polynome

Outil pour trouver le degré (ou ordre) d'un polynome donné, c'est-à-dire la plus grande puissance de la variable du polynome.

Résultats

Degré d'un Polynome -

Catégorie(s) : Fonctions

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Degré d'un Polynome' gratuit ! Merci !

Degré d'un Polynome

Calcul du Degré d'un Polynome




Réponses aux Questions (FAQ)

Qu'est ce que le degré d'un polynome ? (Définition)

Le degré d'un polynome est la plus grande puissance (exposant) associée à la variable du polynome. Le degré est aussi appelé l'ordre du polynome.

Exemple : Le trinome $ x^2 + x + 1 $ de variable $ x $ a pour plus grand exposant $ x^2 $ soit $ 2 $, donc le polynome est de degré $ 2 $ (ou le polynome est du second degré, ou le polynome est d'ordre $ 2 $)

Le degré est parfois noté $ \deg $

Comment calculer le degré d'un polynome ?

Pour trouver le degré d'un polynome, il est nécessaire d'avoir le polynome écrit sous forme développée.

Exemple : $ P(x) = (x+1)^3 $ se développe $ x^3 + 3x^2 + 3x + 1 $

Parcourir tous les éléments du polynome afin de trouver l'exposant maximum associé à la variable, ce maximum est le degré du polynome.

Exemple : Le polynome a 4 éléments: $ \{ x^3, 3x^2, 3x, 1 \} $
$ x^3 $ a pour exposant $ 3 $
$ 3x^2 $ a pour exposant $ 2 $
$ 3x $ a pour exposant $ 1 $
$ 1 $ a pour exposant $ 0 $
La puissance maximale est $ 3 $, donc $ P(x) $ est de degré $ 3 $ (troisième degré).

Comment calculer le degré d'un polynome à degré variable ?

Le degré d'un polynome possédant un degré variable reste la valeur maximum des exposants des éléments du polynome.

Exemple : $ x^n+x^2+1 $ a pour degré $ \max (n,2) $, qui dépend donc de la valeur de $ n $, le degré sera $ n $ si $ n > 2 $ sinon $ 2 $.

Comment calculer le degré d'un polynome à plusieurs variables ?

Le degré d'un polynome est dépendant de la variable associée. Si il y a plusieurs variables, calculer le degré du polynome pour chaque variable.

Quel est le degré du polynome x ?

Le polynome $ x $ (aussi appelé monome) a pour degré $ 1 $ car $ x = x^1 $

Code source

dCode se réserve la propriété du code source pour "Degré d'un Polynome". Tout algorithme pour "Degré d'un Polynome", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Degré d'un Polynome" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Degré d'un Polynome" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Degré d'un Polynome" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/degre-polynome
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Degré d'un Polynome sur dCode.fr [site web en ligne], consulté le 16/04/2025, https://www.dcode.fr/degre-polynome

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Degré d'un Polynome' gratuit ! Merci !


https://www.dcode.fr/degre-polynome
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?