Outil pour trouver les points critiques d'une fonction, correspondant aux valeurs critiques ou la dérivée est nulle ou non définie.
Point Critique d'une Fonction - dCode
Catégorie(s) : Fonctions
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
Un point critique est un point d'une fonction où le gradient est nul ou non défini (la dérivée est égale à 0 ou la dérivée n'est pas réelle). Un point critique est similaire à un point stationnaire (sauf pour la partie non définie) sa valeur peut-être maximum/minimum local/global.
Exemple : Le polynome $ f(x) = x^2 $ a un point critique (qui est aussi un point stationnaire) en $ x = 0 $
A partir de la fonction $ f $, calculer sa dérivée $ f' $ et regarder les valeurs critiques pour lesquelles elle s'annule $ f'(x) = 0 $ ou les valeurs pour lesquelles elle n'est pas définie (voir domaine de dérivabilité).
Exemple : La fonction racine carrée $ f(x) = \sqrt{x} $ a pour dérivée $ f'(x) = \frac{1}{2\sqrt{x}} $ qui n'est pas définie (sur les réels) pour $ x <= 0 $, ses valeurs critiques sont donc tous les nombres négatifs ou nuls.
Un point critique est la réunion de tous les points ou la dérivée est nulle (appelés points stationnaires) avec tous les points ou la dérivée n'est pas définie (appelés points singuliers).
Donc tous les points stationnaires sont des points critiques mais tous les points critiques ne sont pas stationnaires.
dCode se réserve la propriété du code source pour "Point Critique d'une Fonction". Tout algorithme pour "Point Critique d'une Fonction", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Point Critique d'une Fonction" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Point Critique d'une Fonction" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Point Critique d'une Fonction" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Point Critique d'une Fonction sur dCode.fr [site web en ligne], consulté le 17/04/2025,