Outil pour calculer la norme d'un vecteur. La norme d'un vecteur d'un espace vectoriel représente la longueur (ou la distance) du vecteur.
Norme d'un Vecteur - dCode
Catégorie(s) : Matrice
dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !
La norme d'un vecteur est sa longueur. Si $ A $ et $ B $ sont deux points (d'un espace de dimension $ n $) alors la norme du vecteur, notée avec une double barre $ \|\overrightarrow{AB}\| $, est la distance entre $ A $ et $ B $ (la longueur du segment $ [AB] $).
La valeur absolue est le cas particulier de norme pour un nombre réel (une seule dimension).
Dans un espace vectoriel de dimension $ n $, un vecteur $ \vec{v} $ de composantes $ x_i $ : $ \vec{v} = (x_1, x_2, ..., x_n) $ se calcule par la racine carré de la somme des carrés des composantes : $$ \left\|\vec{v}\right\| = \sqrt{x_1^2 + x_2^2 + \cdots +x_n^2} $$
La norme d'un vecteur peut également se calculer à partir du produit scalaire du vecteur avec lui-même : $ \| \vec{v} \| = \sqrt{ \vec{v} \cdot \vec{v} } $
Dans le plan 2D, pour un vecteur $ \vec{v} = (x,y) $ la formule se simplifie $$ \|\vec{v}\|= \sqrt{x^2+y^2} $$
Exemple : $ \vec{v} = \left( \begin{array}{c} 1 \ 2 \end{array} \right) $ donc $ \|\vec{v}\| = \sqrt{1^2+2^2} = \sqrt{5} $
Dans l'espace 3D, pour un vecteur $ \vec{u} = (x,y,z) $ la formule se simplifie $$ \|{\vec{u}}\|= \sqrt{x^2+y^2+z^2} $$
A partir des coordonnées des points $ A (x_A,y_A) $ et $ B (x_B,y_B) $ du vecteur $ \overrightarrow{AB} $, les composantes du vecteurs sont $ {\overrightarrow {AB}} = \{ (x_B-x_A), (y_B-y_A) \} $ et donc la norme est $ \|\overrightarrow {AB}\| = \sqrt{(x_B-x_A)^2+(y_B-y_A)^2} $
dCode se réserve la propriété du code source pour "Norme d'un Vecteur". Tout algorithme pour "Norme d'un Vecteur", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Norme d'un Vecteur" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Norme d'un Vecteur" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.
Le contenu de la page "Norme d'un Vecteur" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source.
L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien :
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Norme d'un Vecteur sur dCode.fr [site web en ligne], consulté le 26/04/2025,