Rechercher un outil
Ordonnée à l'Origine

Outil pour calculer l'ordonnée à l'origine d'une droite à partir de 2 points ou à partir d'1 point et du coefficient directeur. Calcul de l'interception de la droite avec l'axe des ordonnées y.

Résultats

Ordonnée à l'Origine -

Catégorie(s) : Géométrie, Fonctions

Partager
Partager
dCode et plus

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les maths, les énigmes, les géocaches, et les problèmes à résoudre au quotidien !
Une suggestion ? un problème ? une idée ? Écrire à dCode !


Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !


Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Ordonnée à l'Origine' gratuit ! Merci !

Ordonnée à l'Origine

Calculatrice d'Ordonnée à l'Origine

A partir de l'expression de la fonction


A partir de 2 points (droite/affine uniquement)





Voir aussi : Equation de Droite

A partir du coefficient directeur et d'un point




Calculatrice d'Abscisse à l'Origine

⮞ Aller à : Abscisse à l'Origine

Calculatrice de coefficient directeur

⮞ Aller à : Coefficient Directeur

Réponses aux Questions (FAQ)

Qu'est ce que l'ordonnée à l'origine ? (Définition)

L'ordonnée à l'origine est le point d'intersection de la fonction/droite avec l'axe y (ordonnées) pour la valeur d'abscisse x = 0 (origine).

Comment calculer l'ordonnée à l'origine ?

La formule générale pour trouver l'ordonnée à l'origine d'une fonction $ y = f(x) $ est de calculer la valeur de $ y $ lorsque $ x = 0 $.

A partir de l'expression de la fonction

Pour une fonction quelconque (pas forcément affine/linéaire), calculer la valeur pour $ x = 0 $. La valeur obtenue est l'ordonnée à l'origine.

Exemple : Une courbe d'équation $ y = 3x^2 + 1 $, avec $ x = 0 $ vaut $ y = 3 \times 0^2 + 1 = 1 $, donc $ 1 $ est l'ordonnée à l'origine

Pour une équation d'une droite du plan, l'équation a pour forme $ a x + b $ avec $ b $ l'ordonnée à l'origine.

Exemple : Une droite d'équation y=3x+4 a 4 comme ordonnée à l'origine

A partir de 2 points (droite uniquement)

Avec 2 points, peut se calculer l'équation de la droite (voir l'outil de calcul d'équation de droite) et ainsi en déduire l'ordonnée à l'origine (voir ci-dessus)

A partir du coefficient directeur et d'1 point (droite uniquement)

Sachant le coefficient directeur d'une droite et un point, peut se déduire l'équation de la droite (voir l'outil de calcul d'équation de droite) et ainsi en déduire l'ordonnée à l'origine (voir ci-dessus)

Code source

dCode se réserve la propriété du code source pour "Ordonnée à l'Origine". Tout algorithme pour "Ordonnée à l'Origine", applet ou snippet ou script (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toutes fonctions liées à "Ordonnée à l'Origine" (calculer, convertir, résoudre, décrypter / encrypter, déchiffrer / chiffrer, décoder / encoder, traduire) codés en langage informatique (Python, Java, C#, PHP, Javascript, Matlab, etc.) ou toute base de données, ou accès API à "Ordonnée à l'Origine" ou tout autre élément ne sont pas publics (sauf licence open source explicite type Creative Commons). Idem avec le téléchargement pour un usage hors ligne sur PC, mobile, tablette, appli iPhone ou Android.
Rappel : dCode est une ressource éducative et pédagogique, accessible en ligne gratuitement et pour tous.

Citation

Le contenu de la page "Ordonnée à l'Origine" ainsi que ses résultats peuvent être copiés et réutilisés librement, y compris à des fins commerciales, à condition de mentionner dCode.fr comme source. L'export des résultats est gratuit et se fait simplement en cliquant sur les icônes d'export ⤓ (format .csv ou .txt) ou ⧉ copier-coller.
Pour citer dCode.fr sur un autre site Internet, utiliser le lien : https://www.dcode.fr/ordonnee-origine
Dans un article scientifique ou un livre, la citation bibliographique recommandée est : Ordonnée à l'Origine sur dCode.fr [site web en ligne], consulté le 17/04/2025, https://www.dcode.fr/ordonnee-origine

Besoin d'Aide ?

Rendez-vous sur notre communauté Discord dCode pour participer au forum d'entraide !
PS : Pour les messages codés, testez notre détecteur de chiffrement !

Questions / Commentaires

Remarques et suggestions sont les bienvenues afin que dCode propose le meilleur outil 'Ordonnée à l'Origine' gratuit ! Merci !


https://www.dcode.fr/ordonnee-origine
© 2025 dCode — La collection d'outils incontournable pour les jeux, les maths et les énigmes.
 
Un problème ?